Mostrar el registro sencillo del ítem
dc.contributor.author | Bevia, V. | es_ES |
dc.contributor.author | Burgos, C. | es_ES |
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Navarro-Quiles, A. | es_ES |
dc.contributor.author | Villanueva Micó, Rafael Jacinto | es_ES |
dc.date.accessioned | 2021-02-09T04:32:33Z | |
dc.date.available | 2021-02-09T04:32:33Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 0960-0779 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160911 | |
dc.description.abstract | [EN] In spite of its simple formulation via a nonlinear differential equation, the Gompertz model has been widely applied to describe the dynamics of biological and biophysical parts of complex systems (growth of living organisms, number of bacteria, volume of infected cells, etc.). Its parameters or coefficients and the initial condition represent biological quantities (usually, rates and number of individual/particles, respectively) whose nature is random rather than deterministic. In this paper, we present a complete uncertainty quantification analysis of the randomized Gomperz model via the computation of an explicit expression to the first probability density function of its solution stochastic process taking advantage of the Liouville-Gibbs theorem for dynamical systems. The stochastic analysis is completed by computing other important probabilistic information of the model like the distribution of the time until the solution reaches an arbitrary value of specific interest and the stationary distribution of the solution. Finally, we apply all our theoretical findings to two examples, the first of numerical nature and the second to model the dynamics of weight of a species using real data. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Chaos, Solitons and Fractals | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Random nonlinear differential equation | es_ES |
dc.subject | Continuity partial differential equation | es_ES |
dc.subject | Liouville-Gibbs theorem | es_ES |
dc.subject | Randomized Gompertz model | es_ES |
dc.subject | Complex systems with uncertainties | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Uncertainty quantification analysis of the biological Gompertz model subject to random fluctuations in all its parameters | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.chaos.2020.109908 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.description.bibliographicCitation | Bevia, V.; Burgos, C.; Cortés, J.; Navarro-Quiles, A.; Villanueva Micó, RJ. (2020). Uncertainty quantification analysis of the biological Gompertz model subject to random fluctuations in all its parameters. Chaos, Solitons and Fractals. 138:1-12. https://doi.org/10.1016/j.chaos.2020.109908 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.chaos.2020.109908 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 138 | es_ES |
dc.relation.pasarela | S\412483 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Golec, J., & Sathananthan, S. (2003). Stability analysis of a stochastic logistic model. Mathematical and Computer Modelling, 38(5-6), 585-593. doi:10.1016/s0895-7177(03)90029-x | es_ES |
dc.description.references | Cortés, J. C., Jódar, L., & Villafuerte, L. (2009). Random linear-quadratic mathematical models: Computing explicit solutions and applications. Mathematics and Computers in Simulation, 79(7), 2076-2090. doi:10.1016/j.matcom.2008.11.008 | es_ES |
dc.description.references | Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009 | es_ES |
dc.description.references | Dorini, F. A., Bobko, N., & Dorini, L. B. (2016). A note on the logistic equation subject to uncertainties in parameters. Computational and Applied Mathematics, 37(2), 1496-1506. doi:10.1007/s40314-016-0409-6 | es_ES |
dc.description.references | Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2019). Analysis of random non-autonomous logistic-type differential equations via the Karhunen–Loève expansion and the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation, 72, 121-138. doi:10.1016/j.cnsns.2018.12.013 | es_ES |
dc.description.references | Calatayud, J., Cortés, J. C., & Jornet, M. (2019). Improving the approximation of the probability density function of random nonautonomous logistic‐type differential equations. Mathematical Methods in the Applied Sciences, 42(18), 7259-7267. doi:10.1002/mma.5834 | es_ES |
dc.description.references | Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2016). Probabilistic solution of the homogeneous Riccati differential equation: A case-study by using linearization and transformation techniques. Journal of Computational and Applied Mathematics, 291, 20-35. doi:10.1016/j.cam.2014.11.028 | es_ES |
dc.description.references | Hesam, S., Nazemi, A. R., & Haghbin, A. (2012). Analytical solution for the Fokker–Planck equation by differential transform method. Scientia Iranica, 19(4), 1140-1145. doi:10.1016/j.scient.2012.06.018 | es_ES |
dc.description.references | Lakestani, M., & Dehghan, M. (2009). Numerical solution of Fokker-Planck equation using the cubic B-spline scaling functions. Numerical Methods for Partial Differential Equations, 25(2), 418-429. doi:10.1002/num.20352 | es_ES |
dc.description.references | Mao, X., Yuan, C., & Yin, G. (2005). Numerical method for stationary distribution of stochastic differential equations with Markovian switching. Journal of Computational and Applied Mathematics, 174(1), 1-27. doi:10.1016/j.cam.2004.03.016 | es_ES |
dc.description.references | Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2017). Computing probabilistic solutions of the Bernoulli random differential equation. Journal of Computational and Applied Mathematics, 309, 396-407. doi:10.1016/j.cam.2016.02.034 | es_ES |
dc.description.references | Kegan, B., & West, R. W. (2005). Modeling the simple epidemic with deterministic differential equations and random initial conditions. Mathematical Biosciences, 195(2), 179-193. doi:10.1016/j.mbs.2005.02.004 | es_ES |
dc.description.references | Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2017). Full solution of random autonomous first-order linear systems of difference equations. Application to construct random phase portrait for planar systems. Applied Mathematics Letters, 68, 150-156. doi:10.1016/j.aml.2016.12.015 | es_ES |
dc.description.references | Cortés, J. C., Navarro‐Quiles, A., Romero, J., & Roselló, M. (2019). (CMMSE2018 paper) Solving the random Pielou logistic equation with the random variable transformation technique: Theory and applications. Mathematical Methods in the Applied Sciences, 42(17), 5708-5717. doi:10.1002/mma.5440 | es_ES |
dc.description.references | Dorini, F. A., & Cunha, M. C. C. (2011). On the linear advection equation subject to random velocity fields. Mathematics and Computers in Simulation, 82(4), 679-690. doi:10.1016/j.matcom.2011.10.008 | es_ES |
dc.description.references | Slama, H., El-Bedwhey, N. A., El-Depsy, A., & Selim, M. M. (2017). Solution of the finite Milne problem in stochastic media with RVT Technique. The European Physical Journal Plus, 132(12). doi:10.1140/epjp/i2017-11763-6 | es_ES |
dc.description.references | Hussein, A., & Selim, M. M. (2013). A general analytical solution for the stochastic Milne problem using Karhunen–Loeve (K–L) expansion. Journal of Quantitative Spectroscopy and Radiative Transfer, 125, 84-92. doi:10.1016/j.jqsrt.2013.03.018 | es_ES |
dc.description.references | Hussein, A., & Selim, M. M. (2019). A complete probabilistic solution for a stochastic Milne problem of radiative transfer using KLE-RVT technique. Journal of Quantitative Spectroscopy and Radiative Transfer, 232, 54-65. doi:10.1016/j.jqsrt.2019.04.034 | es_ES |
dc.description.references | Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046 | es_ES |
dc.description.references | Bekiryazici, Z., Merdan, M., & Kesemen, T. (2020). Modification of the random differential transformation method and its applications to compartmental models. Communications in Statistics - Theory and Methods, 50(18), 4271-4292. doi:10.1080/03610926.2020.1713372 | es_ES |
dc.description.references | Calatayud, J., Cortés, J.-C., Díaz, J. A., & Jornet, M. (2020). Constructing reliable approximations of the probability density function to the random heat PDE via a finite difference scheme. Applied Numerical Mathematics, 151, 413-424. doi:10.1016/j.apnum.2020.01.012 | es_ES |
dc.description.references | Laird, A. K. (1965). Dynamics of Tumour Growth: Comparison of Growth Rates and Extrapolation of Growth Curve to One Cell. British Journal of Cancer, 19(2), 278-291. doi:10.1038/bjc.1965.32 | es_ES |
dc.description.references | Nahashon, S. N., Aggrey, S. E., Adefope, N. A., Amenyenu, A., & Wright, D. (2006). Growth Characteristics of Pearl Gray Guinea Fowl as Predicted by the Richards, Gompertz, and Logistic Models. Poultry Science, 85(2), 359-363. doi:10.1093/ps/85.2.359 | es_ES |