Golec, J., & Sathananthan, S. (2003). Stability analysis of a stochastic logistic model. Mathematical and Computer Modelling, 38(5-6), 585-593. doi:10.1016/s0895-7177(03)90029-x
Cortés, J. C., Jódar, L., & Villafuerte, L. (2009). Random linear-quadratic mathematical models: Computing explicit solutions and applications. Mathematics and Computers in Simulation, 79(7), 2076-2090. doi:10.1016/j.matcom.2008.11.008
Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009
[+]
Golec, J., & Sathananthan, S. (2003). Stability analysis of a stochastic logistic model. Mathematical and Computer Modelling, 38(5-6), 585-593. doi:10.1016/s0895-7177(03)90029-x
Cortés, J. C., Jódar, L., & Villafuerte, L. (2009). Random linear-quadratic mathematical models: Computing explicit solutions and applications. Mathematics and Computers in Simulation, 79(7), 2076-2090. doi:10.1016/j.matcom.2008.11.008
Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009
Dorini, F. A., Bobko, N., & Dorini, L. B. (2016). A note on the logistic equation subject to uncertainties in parameters. Computational and Applied Mathematics, 37(2), 1496-1506. doi:10.1007/s40314-016-0409-6
Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2019). Analysis of random non-autonomous logistic-type differential equations via the Karhunen–Loève expansion and the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation, 72, 121-138. doi:10.1016/j.cnsns.2018.12.013
Calatayud, J., Cortés, J. C., & Jornet, M. (2019). Improving the approximation of the probability density function of random nonautonomous logistic‐type differential equations. Mathematical Methods in the Applied Sciences, 42(18), 7259-7267. doi:10.1002/mma.5834
Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2016). Probabilistic solution of the homogeneous Riccati differential equation: A case-study by using linearization and transformation techniques. Journal of Computational and Applied Mathematics, 291, 20-35. doi:10.1016/j.cam.2014.11.028
Hesam, S., Nazemi, A. R., & Haghbin, A. (2012). Analytical solution for the Fokker–Planck equation by differential transform method. Scientia Iranica, 19(4), 1140-1145. doi:10.1016/j.scient.2012.06.018
Lakestani, M., & Dehghan, M. (2009). Numerical solution of Fokker-Planck equation using the cubic B-spline scaling functions. Numerical Methods for Partial Differential Equations, 25(2), 418-429. doi:10.1002/num.20352
Mao, X., Yuan, C., & Yin, G. (2005). Numerical method for stationary distribution of stochastic differential equations with Markovian switching. Journal of Computational and Applied Mathematics, 174(1), 1-27. doi:10.1016/j.cam.2004.03.016
Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2017). Computing probabilistic solutions of the Bernoulli random differential equation. Journal of Computational and Applied Mathematics, 309, 396-407. doi:10.1016/j.cam.2016.02.034
Kegan, B., & West, R. W. (2005). Modeling the simple epidemic with deterministic differential equations and random initial conditions. Mathematical Biosciences, 195(2), 179-193. doi:10.1016/j.mbs.2005.02.004
Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2017). Full solution of random autonomous first-order linear systems of difference equations. Application to construct random phase portrait for planar systems. Applied Mathematics Letters, 68, 150-156. doi:10.1016/j.aml.2016.12.015
Cortés, J. C., Navarro‐Quiles, A., Romero, J., & Roselló, M. (2019). (CMMSE2018 paper) Solving the random Pielou logistic equation with the random variable transformation technique: Theory and applications. Mathematical Methods in the Applied Sciences, 42(17), 5708-5717. doi:10.1002/mma.5440
Dorini, F. A., & Cunha, M. C. C. (2011). On the linear advection equation subject to random velocity fields. Mathematics and Computers in Simulation, 82(4), 679-690. doi:10.1016/j.matcom.2011.10.008
Slama, H., El-Bedwhey, N. A., El-Depsy, A., & Selim, M. M. (2017). Solution of the finite Milne problem in stochastic media with RVT Technique. The European Physical Journal Plus, 132(12). doi:10.1140/epjp/i2017-11763-6
Hussein, A., & Selim, M. M. (2013). A general analytical solution for the stochastic Milne problem using Karhunen–Loeve (K–L) expansion. Journal of Quantitative Spectroscopy and Radiative Transfer, 125, 84-92. doi:10.1016/j.jqsrt.2013.03.018
Hussein, A., & Selim, M. M. (2019). A complete probabilistic solution for a stochastic Milne problem of radiative transfer using KLE-RVT technique. Journal of Quantitative Spectroscopy and Radiative Transfer, 232, 54-65. doi:10.1016/j.jqsrt.2019.04.034
Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046
Bekiryazici, Z., Merdan, M., & Kesemen, T. (2020). Modification of the random differential transformation method and its applications to compartmental models. Communications in Statistics - Theory and Methods, 50(18), 4271-4292. doi:10.1080/03610926.2020.1713372
Calatayud, J., Cortés, J.-C., Díaz, J. A., & Jornet, M. (2020). Constructing reliable approximations of the probability density function to the random heat PDE via a finite difference scheme. Applied Numerical Mathematics, 151, 413-424. doi:10.1016/j.apnum.2020.01.012
Laird, A. K. (1965). Dynamics of Tumour Growth: Comparison of Growth Rates and Extrapolation of Growth Curve to One Cell. British Journal of Cancer, 19(2), 278-291. doi:10.1038/bjc.1965.32
Nahashon, S. N., Aggrey, S. E., Adefope, N. A., Amenyenu, A., & Wright, D. (2006). Growth Characteristics of Pearl Gray Guinea Fowl as Predicted by the Richards, Gompertz, and Logistic Models. Poultry Science, 85(2), 359-363. doi:10.1093/ps/85.2.359
[-]