- -

Parametric controllability of the personalized PageRank: Classic model vs biplex approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parametric controllability of the personalized PageRank: Classic model vs biplex approach

Mostrar el registro completo del ítem

Flores, J.; García, E.; Pedroche Sánchez, F.; Romance, M. (2020). Parametric controllability of the personalized PageRank: Classic model vs biplex approach. Chaos An Interdisciplinary Journal of Nonlinear Science. 30(2):1-15. https://doi.org/10.1063/1.5128567

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160976

Ficheros en el ítem

Metadatos del ítem

Título: Parametric controllability of the personalized PageRank: Classic model vs biplex approach
Autor: Flores, Julio García, Esther Pedroche Sánchez, Francisco Romance, Miguel
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Measures of centrality in networks defined by means of matrix algebra, like PageRank-type centralities, have been used for over 70 years. Recently, new extensions of PageRank have been formulated and may include a ...[+]
Palabras clave: PageRank , Biplex-approach , Complex networks
Derechos de uso: Reserva de todos los derechos
Fuente:
Chaos An Interdisciplinary Journal of Nonlinear Science. (issn: 1054-1500 )
DOI: 10.1063/1.5128567
Editorial:
American Institute of Physics
Versión del editor: https://doi.org/10.1063/1.5128567
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-84194-P/ES/SISTEMAS DE JORDAN, ALGEBRAS DE LIE Y REDES COMPLEJAS/
info:eu-repo/grantAgreement/MINECO//MTM2016-76808-P/ES/OPERADORES, RETICULOS Y ESTRUCTURA DE ESPACIOS DE BANACH/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101625-B-I00/ES/METODOS ALGEBRAICOS Y ANALITICOS EN ANALISIS DE REDES COMPLEJAS/
Agradecimientos:
This work has been partially supported by the Spanish Ministry of Science, Innovation and Universities under Project Nos. PGC2018-101625-B-I00, MTM2016-76808-P, and MTM2017-84194-P (AEI/FEDER, UE).
Tipo: Artículo

References

Agryzkov, T., Curado, M., Pedroche, F., Tortosa, L., & Vicent, J. (2019). Extending the Adapted PageRank Algorithm Centrality to Multiplex Networks with Data Using the PageRank Two-Layer Approach. Symmetry, 11(2), 284. doi:10.3390/sym11020284

Agryzkov, T., Pedroche, F., Tortosa, L., & Vicent, J. (2018). Combining the Two-Layers PageRank Approach with the APA Centrality in Networks with Data. ISPRS International Journal of Geo-Information, 7(12), 480. doi:10.3390/ijgi7120480

Allcott, H., Gentzkow, M., & Yu, C. (2019). Trends in the diffusion of misinformation on social media. Research & Politics, 6(2), 205316801984855. doi:10.1177/2053168019848554 [+]
Agryzkov, T., Curado, M., Pedroche, F., Tortosa, L., & Vicent, J. (2019). Extending the Adapted PageRank Algorithm Centrality to Multiplex Networks with Data Using the PageRank Two-Layer Approach. Symmetry, 11(2), 284. doi:10.3390/sym11020284

Agryzkov, T., Pedroche, F., Tortosa, L., & Vicent, J. (2018). Combining the Two-Layers PageRank Approach with the APA Centrality in Networks with Data. ISPRS International Journal of Geo-Information, 7(12), 480. doi:10.3390/ijgi7120480

Allcott, H., Gentzkow, M., & Yu, C. (2019). Trends in the diffusion of misinformation on social media. Research & Politics, 6(2), 205316801984855. doi:10.1177/2053168019848554

Aleja, D., Criado, R., García del Amo, A. J., Pérez, Á., & Romance, M. (2019). Non-backtracking PageRank: From the classic model to hashimoto matrices. Chaos, Solitons & Fractals, 126, 283-291. doi:10.1016/j.chaos.2019.06.017

Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509

Bavelas, A. (1948). A Mathematical Model for Group Structures. Human Organization, 7(3), 16-30. doi:10.17730/humo.7.3.f4033344851gl053

Benson, A. R. (2019). Three Hypergraph Eigenvector Centralities. SIAM Journal on Mathematics of Data Science, 1(2), 293-312. doi:10.1137/18m1203031

Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardeñes, J., Romance, M., … Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1-122. doi:10.1016/j.physrep.2014.07.001

Boldi, P., & Vigna, S. (2014). Axioms for Centrality. Internet Mathematics, 10(3-4), 222-262. doi:10.1080/15427951.2013.865686

Boldi, P., Santini, M., & Vigna, S. (2009). PageRank. ACM Transactions on Information Systems, 27(4), 1-23. doi:10.1145/1629096.1629097

Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 2(1), 113-120. doi:10.1080/0022250x.1972.9989806

Borgatti, S. P., & Everett, M. G. (2006). A Graph-theoretic perspective on centrality. Social Networks, 28(4), 466-484. doi:10.1016/j.socnet.2005.11.005

Buzzanca, M., Carchiolo, V., Longheu, A., Malgeri, M., & Mangioni, G. (2018). Black hole metric: Overcoming the pagerank normalization problem. Information Sciences, 438, 58-72. doi:10.1016/j.ins.2018.01.033

De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S., & Arenas, A. (2015). Ranking in interconnected multilayer networks reveals versatile nodes. Nature Communications, 6(1). doi:10.1038/ncomms7868

DeFord, D. R., & Pauls, S. D. (2017). A new framework for dynamical models on multiplex networks. Journal of Complex Networks, 6(3), 353-381. doi:10.1093/comnet/cnx041

Del Corso, G. M., & Romani, F. (2016). A multi-class approach for ranking graph nodes: Models and experiments with incomplete data. Information Sciences, 329, 619-637. doi:10.1016/j.ins.2015.09.046

Estrada, E., & Silver, G. (2017). Accounting for the role of long walks on networks via a new matrix function. Journal of Mathematical Analysis and Applications, 449(2), 1581-1600. doi:10.1016/j.jmaa.2016.12.062

Festinger, L. (1949). The Analysis of Sociograms using Matrix Algebra. Human Relations, 2(2), 153-158. doi:10.1177/001872674900200205

Votruba, J. (1975). On the determination of χl,η+−0 AND η000 from bubble chamber measurements. Czechoslovak Journal of Physics, 25(6), 619-625. doi:10.1007/bf01591018

Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239. doi:10.1016/0378-8733(78)90021-7

Ermann, L., Frahm, K. M., & Shepelyansky, D. L. (2015). Google matrix analysis of directed networks. Reviews of Modern Physics, 87(4), 1261-1310. doi:10.1103/revmodphys.87.1261

Frahm, K. M., & Shepelyansky, D. L. (2019). Ising-PageRank model of opinion formation on social networks. Physica A: Statistical Mechanics and its Applications, 526, 121069. doi:10.1016/j.physa.2019.121069

García, E., Pedroche, F., & Romance, M. (2013). On the localization of the personalized PageRank of complex networks. Linear Algebra and its Applications, 439(3), 640-652. doi:10.1016/j.laa.2012.10.051

Gu, C., Jiang, X., Shao, C., & Chen, Z. (2018). A GMRES-Power algorithm for computing PageRank problems. Journal of Computational and Applied Mathematics, 343, 113-123. doi:10.1016/j.cam.2018.03.017

Halu, A., Mondragón, R. J., Panzarasa, P., & Bianconi, G. (2013). Multiplex PageRank. PLoS ONE, 8(10), e78293. doi:10.1371/journal.pone.0078293

Horn, R. A., & Johnson, C. R. (1991). Topics in Matrix Analysis. doi:10.1017/cbo9780511840371

Iacovacci, J., & Bianconi, G. (2016). Extracting information from multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(6), 065306. doi:10.1063/1.4953161

Iacovacci, J., Rahmede, C., Arenas, A., & Bianconi, G. (2016). Functional Multiplex PageRank. EPL (Europhysics Letters), 116(2), 28004. doi:10.1209/0295-5075/116/28004

Iván, G., & Grolmusz, V. (2010). When the Web meets the cell: using personalized PageRank for analyzing protein interaction networks. Bioinformatics, 27(3), 405-407. doi:10.1093/bioinformatics/btq680

Kalecky, K., & Cho, Y.-R. (2018). PrimAlign: PageRank-inspired Markovian alignment for large biological networks. Bioinformatics, 34(13), i537-i546. doi:10.1093/bioinformatics/bty288

Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 39-43. doi:10.1007/bf02289026

Langville, A., & Meyer, C. (2004). Deeper Inside PageRank. Internet Mathematics, 1(3), 335-380. doi:10.1080/15427951.2004.10129091

Liu, Y.-Y., Slotine, J.-J., & Barabási, A.-L. (2011). Controllability of complex networks. Nature, 473(7346), 167-173. doi:10.1038/nature10011

Lv, L., Zhang, K., Zhang, T., Bardou, D., Zhang, J., & Cai, Y. (2019). PageRank centrality for temporal networks. Physics Letters A, 383(12), 1215-1222. doi:10.1016/j.physleta.2019.01.041

Massucci, F. A., & Docampo, D. (2019). Measuring the academic reputation through citation networks via PageRank. Journal of Informetrics, 13(1), 185-201. doi:10.1016/j.joi.2018.12.001

Masuda, N., Porter, M. A., & Lambiotte, R. (2017). Random walks and diffusion on networks. Physics Reports, 716-717, 1-58. doi:10.1016/j.physrep.2017.07.007

Migallón, H., Migallón, V., & Penadés, J. (2018). Parallel two-stage algorithms for solving the PageRank problem. Advances in Engineering Software, 125, 188-199. doi:10.1016/j.advengsoft.2018.03.002

Newman, M. (2010). Networks. doi:10.1093/acprof:oso/9780199206650.001.0001

Nicosia, V., Criado, R., Romance, M., Russo, G., & Latora, V. (2012). Controlling centrality in complex networks. Scientific Reports, 2(1). doi:10.1038/srep00218

Pedroche, F., García, E., Romance, M., & Criado, R. (2018). Sharp estimates for the personalized Multiplex PageRank. Journal of Computational and Applied Mathematics, 330, 1030-1040. doi:10.1016/j.cam.2017.02.013

Pedroche, F., Tortosa, L., & Vicent, J. F. (2019). An Eigenvector Centrality for Multiplex Networks with Data. Symmetry, 11(6), 763. doi:10.3390/sym11060763

Pedroche, F., Romance, M., & Criado, R. (2016). A biplex approach to PageRank centrality: From classic to multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(6), 065301. doi:10.1063/1.4952955

Sciarra, C., Chiarotti, G., Laio, F., & Ridolfi, L. (2018). A change of perspective in network centrality. Scientific Reports, 8(1). doi:10.1038/s41598-018-33336-8

Scholz, M., Pfeiffer, J., & Rothlauf, F. (2017). Using PageRank for non-personalized default rankings in dynamic markets. European Journal of Operational Research, 260(1), 388-401. doi:10.1016/j.ejor.2016.12.022

Shen, Y., Gu, C., & Zhao, P. (2019). Structural Vulnerability Assessment of Multi-energy System Using a PageRank Algorithm. Energy Procedia, 158, 6466-6471. doi:10.1016/j.egypro.2019.01.132

Shen, Z.-L., Huang, T.-Z., Carpentieri, B., Wen, C., Gu, X.-M., & Tan, X.-Y. (2019). Off-diagonal low-rank preconditioner for difficult PageRank problems. Journal of Computational and Applied Mathematics, 346, 456-470. doi:10.1016/j.cam.2018.07.015

Shepelyansky, D. L., & Zhirov, O. V. (2010). Towards Google matrix of brain. Physics Letters A, 374(31-32), 3206-3209. doi:10.1016/j.physleta.2010.06.007

Solá, L., Romance, M., Criado, R., Flores, J., García del Amo, A., & Boccaletti, S. (2013). Eigenvector centrality of nodes in multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(3), 033131. doi:10.1063/1.4818544

Tian, Z., Liu, Y., Zhang, Y., Liu, Z., & Tian, M. (2019). The general inner-outer iteration method based on regular splittings for the PageRank problem. Applied Mathematics and Computation, 356, 479-501. doi:10.1016/j.amc.2019.02.066

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442. doi:10.1038/30918

Yun, T.-S., Jeong, D., & Park, S. (2019). «Too central to fail» systemic risk measure using PageRank algorithm. Journal of Economic Behavior & Organization, 162, 251-272. doi:10.1016/j.jebo.2018.12.021

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem