- -

Parametric controllability of the personalized PageRank: Classic model vs biplex approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parametric controllability of the personalized PageRank: Classic model vs biplex approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Flores, Julio es_ES
dc.contributor.author García, Esther es_ES
dc.contributor.author Pedroche Sánchez, Francisco es_ES
dc.contributor.author Romance, Miguel es_ES
dc.date.accessioned 2021-02-10T04:31:23Z
dc.date.available 2021-02-10T04:31:23Z
dc.date.issued 2020-02 es_ES
dc.identifier.issn 1054-1500 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160976
dc.description.abstract [EN] Measures of centrality in networks defined by means of matrix algebra, like PageRank-type centralities, have been used for over 70 years. Recently, new extensions of PageRank have been formulated and may include a personalization (or teleportation) vector. It is accepted that one of the key issues for any centrality measure formulation is to what extent someone can control its variability. In this paper, we compare the limits of variability of two centrality measures for complex networks that we call classic PageRank (PR) and biplex approach PageRank (BPR). Both centrality measures depend on the so-called damping parameter alpha that controls the quantity of teleportation. Our first result is that the intersection of the intervals of variation of both centrality measures is always a nonempty set. Our second result is that when alpha is lower that 0.48 (and, therefore, the ranking is highly affected by teleportation effects) then the upper limits of PR are more controllable than the upper limits of BPR; on the contrary, when alpha is greater than 0.5 (and we recall that the usual PageRank algorithm uses the value 0.85), then the upper limits of PR are less controllable than the upper limits of BPR, provided certain mild assumptions on the local structure of the graph. Regarding the lower limits of variability, we give a result for small values of alpha. We illustrate the results with some analytical networks and also with a real Facebook network. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Ministry of Science, Innovation and Universities under Project Nos. PGC2018-101625-B-I00, MTM2016-76808-P, and MTM2017-84194-P (AEI/FEDER, UE). es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof Chaos An Interdisciplinary Journal of Nonlinear Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject PageRank es_ES
dc.subject Biplex-approach es_ES
dc.subject Complex networks es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Parametric controllability of the personalized PageRank: Classic model vs biplex approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.5128567 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-84194-P/ES/SISTEMAS DE JORDAN, ALGEBRAS DE LIE Y REDES COMPLEJAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-76808-P/ES/OPERADORES, RETICULOS Y ESTRUCTURA DE ESPACIOS DE BANACH/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-101625-B-I00/ES/METODOS ALGEBRAICOS Y ANALITICOS EN ANALISIS DE REDES COMPLEJAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Flores, J.; García, E.; Pedroche Sánchez, F.; Romance, M. (2020). Parametric controllability of the personalized PageRank: Classic model vs biplex approach. Chaos An Interdisciplinary Journal of Nonlinear Science. 30(2):1-15. https://doi.org/10.1063/1.5128567 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1063/1.5128567 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\402309 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Agryzkov, T., Curado, M., Pedroche, F., Tortosa, L., & Vicent, J. (2019). Extending the Adapted PageRank Algorithm Centrality to Multiplex Networks with Data Using the PageRank Two-Layer Approach. Symmetry, 11(2), 284. doi:10.3390/sym11020284 es_ES
dc.description.references Agryzkov, T., Pedroche, F., Tortosa, L., & Vicent, J. (2018). Combining the Two-Layers PageRank Approach with the APA Centrality in Networks with Data. ISPRS International Journal of Geo-Information, 7(12), 480. doi:10.3390/ijgi7120480 es_ES
dc.description.references Allcott, H., Gentzkow, M., & Yu, C. (2019). Trends in the diffusion of misinformation on social media. Research & Politics, 6(2), 205316801984855. doi:10.1177/2053168019848554 es_ES
dc.description.references Aleja, D., Criado, R., García del Amo, A. J., Pérez, Á., & Romance, M. (2019). Non-backtracking PageRank: From the classic model to hashimoto matrices. Chaos, Solitons & Fractals, 126, 283-291. doi:10.1016/j.chaos.2019.06.017 es_ES
dc.description.references Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509 es_ES
dc.description.references Bavelas, A. (1948). A Mathematical Model for Group Structures. Human Organization, 7(3), 16-30. doi:10.17730/humo.7.3.f4033344851gl053 es_ES
dc.description.references Benson, A. R. (2019). Three Hypergraph Eigenvector Centralities. SIAM Journal on Mathematics of Data Science, 1(2), 293-312. doi:10.1137/18m1203031 es_ES
dc.description.references Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardeñes, J., Romance, M., … Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1-122. doi:10.1016/j.physrep.2014.07.001 es_ES
dc.description.references Boldi, P., & Vigna, S. (2014). Axioms for Centrality. Internet Mathematics, 10(3-4), 222-262. doi:10.1080/15427951.2013.865686 es_ES
dc.description.references Boldi, P., Santini, M., & Vigna, S. (2009). PageRank. ACM Transactions on Information Systems, 27(4), 1-23. doi:10.1145/1629096.1629097 es_ES
dc.description.references Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 2(1), 113-120. doi:10.1080/0022250x.1972.9989806 es_ES
dc.description.references Borgatti, S. P., & Everett, M. G. (2006). A Graph-theoretic perspective on centrality. Social Networks, 28(4), 466-484. doi:10.1016/j.socnet.2005.11.005 es_ES
dc.description.references Buzzanca, M., Carchiolo, V., Longheu, A., Malgeri, M., & Mangioni, G. (2018). Black hole metric: Overcoming the pagerank normalization problem. Information Sciences, 438, 58-72. doi:10.1016/j.ins.2018.01.033 es_ES
dc.description.references De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S., & Arenas, A. (2015). Ranking in interconnected multilayer networks reveals versatile nodes. Nature Communications, 6(1). doi:10.1038/ncomms7868 es_ES
dc.description.references DeFord, D. R., & Pauls, S. D. (2017). A new framework for dynamical models on multiplex networks. Journal of Complex Networks, 6(3), 353-381. doi:10.1093/comnet/cnx041 es_ES
dc.description.references Del Corso, G. M., & Romani, F. (2016). A multi-class approach for ranking graph nodes: Models and experiments with incomplete data. Information Sciences, 329, 619-637. doi:10.1016/j.ins.2015.09.046 es_ES
dc.description.references Estrada, E., & Silver, G. (2017). Accounting for the role of long walks on networks via a new matrix function. Journal of Mathematical Analysis and Applications, 449(2), 1581-1600. doi:10.1016/j.jmaa.2016.12.062 es_ES
dc.description.references Festinger, L. (1949). The Analysis of Sociograms using Matrix Algebra. Human Relations, 2(2), 153-158. doi:10.1177/001872674900200205 es_ES
dc.description.references Votruba, J. (1975). On the determination of χl,η+−0 AND η000 from bubble chamber measurements. Czechoslovak Journal of Physics, 25(6), 619-625. doi:10.1007/bf01591018 es_ES
dc.description.references Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239. doi:10.1016/0378-8733(78)90021-7 es_ES
dc.description.references Ermann, L., Frahm, K. M., & Shepelyansky, D. L. (2015). Google matrix analysis of directed networks. Reviews of Modern Physics, 87(4), 1261-1310. doi:10.1103/revmodphys.87.1261 es_ES
dc.description.references Frahm, K. M., & Shepelyansky, D. L. (2019). Ising-PageRank model of opinion formation on social networks. Physica A: Statistical Mechanics and its Applications, 526, 121069. doi:10.1016/j.physa.2019.121069 es_ES
dc.description.references García, E., Pedroche, F., & Romance, M. (2013). On the localization of the personalized PageRank of complex networks. Linear Algebra and its Applications, 439(3), 640-652. doi:10.1016/j.laa.2012.10.051 es_ES
dc.description.references Gu, C., Jiang, X., Shao, C., & Chen, Z. (2018). A GMRES-Power algorithm for computing PageRank problems. Journal of Computational and Applied Mathematics, 343, 113-123. doi:10.1016/j.cam.2018.03.017 es_ES
dc.description.references Halu, A., Mondragón, R. J., Panzarasa, P., & Bianconi, G. (2013). Multiplex PageRank. PLoS ONE, 8(10), e78293. doi:10.1371/journal.pone.0078293 es_ES
dc.description.references Horn, R. A., & Johnson, C. R. (1991). Topics in Matrix Analysis. doi:10.1017/cbo9780511840371 es_ES
dc.description.references Iacovacci, J., & Bianconi, G. (2016). Extracting information from multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(6), 065306. doi:10.1063/1.4953161 es_ES
dc.description.references Iacovacci, J., Rahmede, C., Arenas, A., & Bianconi, G. (2016). Functional Multiplex PageRank. EPL (Europhysics Letters), 116(2), 28004. doi:10.1209/0295-5075/116/28004 es_ES
dc.description.references Iván, G., & Grolmusz, V. (2010). When the Web meets the cell: using personalized PageRank for analyzing protein interaction networks. Bioinformatics, 27(3), 405-407. doi:10.1093/bioinformatics/btq680 es_ES
dc.description.references Kalecky, K., & Cho, Y.-R. (2018). PrimAlign: PageRank-inspired Markovian alignment for large biological networks. Bioinformatics, 34(13), i537-i546. doi:10.1093/bioinformatics/bty288 es_ES
dc.description.references Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 39-43. doi:10.1007/bf02289026 es_ES
dc.description.references Langville, A., & Meyer, C. (2004). Deeper Inside PageRank. Internet Mathematics, 1(3), 335-380. doi:10.1080/15427951.2004.10129091 es_ES
dc.description.references Liu, Y.-Y., Slotine, J.-J., & Barabási, A.-L. (2011). Controllability of complex networks. Nature, 473(7346), 167-173. doi:10.1038/nature10011 es_ES
dc.description.references Lv, L., Zhang, K., Zhang, T., Bardou, D., Zhang, J., & Cai, Y. (2019). PageRank centrality for temporal networks. Physics Letters A, 383(12), 1215-1222. doi:10.1016/j.physleta.2019.01.041 es_ES
dc.description.references Massucci, F. A., & Docampo, D. (2019). Measuring the academic reputation through citation networks via PageRank. Journal of Informetrics, 13(1), 185-201. doi:10.1016/j.joi.2018.12.001 es_ES
dc.description.references Masuda, N., Porter, M. A., & Lambiotte, R. (2017). Random walks and diffusion on networks. Physics Reports, 716-717, 1-58. doi:10.1016/j.physrep.2017.07.007 es_ES
dc.description.references Migallón, H., Migallón, V., & Penadés, J. (2018). Parallel two-stage algorithms for solving the PageRank problem. Advances in Engineering Software, 125, 188-199. doi:10.1016/j.advengsoft.2018.03.002 es_ES
dc.description.references Newman, M. (2010). Networks. doi:10.1093/acprof:oso/9780199206650.001.0001 es_ES
dc.description.references Nicosia, V., Criado, R., Romance, M., Russo, G., & Latora, V. (2012). Controlling centrality in complex networks. Scientific Reports, 2(1). doi:10.1038/srep00218 es_ES
dc.description.references Pedroche, F., García, E., Romance, M., & Criado, R. (2018). Sharp estimates for the personalized Multiplex PageRank. Journal of Computational and Applied Mathematics, 330, 1030-1040. doi:10.1016/j.cam.2017.02.013 es_ES
dc.description.references Pedroche, F., Tortosa, L., & Vicent, J. F. (2019). An Eigenvector Centrality for Multiplex Networks with Data. Symmetry, 11(6), 763. doi:10.3390/sym11060763 es_ES
dc.description.references Pedroche, F., Romance, M., & Criado, R. (2016). A biplex approach to PageRank centrality: From classic to multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(6), 065301. doi:10.1063/1.4952955 es_ES
dc.description.references Sciarra, C., Chiarotti, G., Laio, F., & Ridolfi, L. (2018). A change of perspective in network centrality. Scientific Reports, 8(1). doi:10.1038/s41598-018-33336-8 es_ES
dc.description.references Scholz, M., Pfeiffer, J., & Rothlauf, F. (2017). Using PageRank for non-personalized default rankings in dynamic markets. European Journal of Operational Research, 260(1), 388-401. doi:10.1016/j.ejor.2016.12.022 es_ES
dc.description.references Shen, Y., Gu, C., & Zhao, P. (2019). Structural Vulnerability Assessment of Multi-energy System Using a PageRank Algorithm. Energy Procedia, 158, 6466-6471. doi:10.1016/j.egypro.2019.01.132 es_ES
dc.description.references Shen, Z.-L., Huang, T.-Z., Carpentieri, B., Wen, C., Gu, X.-M., & Tan, X.-Y. (2019). Off-diagonal low-rank preconditioner for difficult PageRank problems. Journal of Computational and Applied Mathematics, 346, 456-470. doi:10.1016/j.cam.2018.07.015 es_ES
dc.description.references Shepelyansky, D. L., & Zhirov, O. V. (2010). Towards Google matrix of brain. Physics Letters A, 374(31-32), 3206-3209. doi:10.1016/j.physleta.2010.06.007 es_ES
dc.description.references Solá, L., Romance, M., Criado, R., Flores, J., García del Amo, A., & Boccaletti, S. (2013). Eigenvector centrality of nodes in multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(3), 033131. doi:10.1063/1.4818544 es_ES
dc.description.references Tian, Z., Liu, Y., Zhang, Y., Liu, Z., & Tian, M. (2019). The general inner-outer iteration method based on regular splittings for the PageRank problem. Applied Mathematics and Computation, 356, 479-501. doi:10.1016/j.amc.2019.02.066 es_ES
dc.description.references Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442. doi:10.1038/30918 es_ES
dc.description.references Yun, T.-S., Jeong, D., & Park, S. (2019). «Too central to fail» systemic risk measure using PageRank algorithm. Journal of Economic Behavior & Organization, 162, 251-272. doi:10.1016/j.jebo.2018.12.021 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem