- -

A new high-order and effcient family of iterative techniques for nonlinear models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new high-order and effcient family of iterative techniques for nonlinear models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Behl, Ramandeep es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.date.accessioned 2021-02-10T04:31:30Z
dc.date.available 2021-02-10T04:31:30Z
dc.date.issued 2020-01-30 es_ES
dc.identifier.issn 1076-2787 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160980
dc.description.abstract [EN] In this paper, we want to construct a new high-order and efficient iterative technique for solving a system of nonlinear equations. For this purpose, we extend the earlier scalar scheme [16] to a system of nonlinear equations preserving the same convergence order. Moreover, by adding one more additional step, we obtain minimum 5th-order convergence for every value of a free parameter, theta is an element of Double-struck capital R, and for theta=-1, the method reaches maximum 6-order convergence. We present an extensive convergence analysis of our scheme. The analytical discussion of the work is upheld by performing numerical experiments on some applied science problems and a large system of nonlinear equations. Furthermore, numerical results demonstrate the validity and reliability of the suggested methods. es_ES
dc.description.sponsorship This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. (D-349-130-1441). The authors, therefore, acknowledge with thanks, DSR technical and financial support. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Complexity es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A new high-order and effcient family of iterative techniques for nonlinear models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2020/1706841 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/KAU//D-349-130-1441/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Behl, R.; Martínez Molada, E. (2020). A new high-order and effcient family of iterative techniques for nonlinear models. Complexity. 2020:1-11. https://doi.org/10.1155/2020/1706841 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2020/1706841 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2020 es_ES
dc.relation.pasarela S\422491 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder King Abdulaziz University, Arabia Saudí es_ES
dc.description.references Rubio, J. de J., Cruz, D. R., Elias, I., Ochoa, G., Balcazar, R., & Aguilar, A. (2019). ANFIS system for classification of brain signals. Journal of Intelligent & Fuzzy Systems, 37(3), 4033-4041. doi:10.3233/jifs-190207 es_ES
dc.description.references De Jesus Rubio, J. (2009). SOFMLS: Online Self-Organizing Fuzzy Modified Least-Squares Network. IEEE Transactions on Fuzzy Systems, 17(6), 1296-1309. doi:10.1109/tfuzz.2009.2029569 es_ES
dc.description.references Giap, C. N., Son, L. H., & Chiclana, F. (2018). Dynamic structural neural network. Journal of Intelligent & Fuzzy Systems, 34(4), 2479-2490. doi:10.3233/jifs-171947 es_ES
dc.description.references De Jesús Rubio, J., Garcia, E., Ochoa, G., Elias, I., Cruz, D. R., Balcazar, R., … Novoa, J. F. (2019). Unscented Kalman filter for learning of a solar dryer and a greenhouse. Journal of Intelligent & Fuzzy Systems, 37(5), 6731-6741. doi:10.3233/jifs-190216 es_ES
dc.description.references Awawdeh, F. (2009). On new iterative method for solving systems of nonlinear equations. Numerical Algorithms, 54(3), 395-409. doi:10.1007/s11075-009-9342-8 es_ES
dc.description.references Grosan, C., & Abraham, A. (2008). A New Approach for Solving Nonlinear Equations Systems. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 38(3), 698-714. doi:10.1109/tsmca.2008.918599 es_ES
dc.description.references Lin, Y., Bao, L., & Jia, X. (2010). Convergence analysis of a variant of the Newton method for solving nonlinear equations. Computers & Mathematics with Applications, 59(6), 2121-2127. doi:10.1016/j.camwa.2009.12.017 es_ES
dc.description.references Tsoulos, I. G., & Stavrakoudis, A. (2010). On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods. Nonlinear Analysis: Real World Applications, 11(4), 2465-2471. doi:10.1016/j.nonrwa.2009.08.003 es_ES
dc.description.references Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z es_ES
dc.description.references Cordero, A., Maimó, J. G., Torregrosa, J. R., & Vassileva, M. P. (2014). Solving nonlinear problems by Ostrowski–Chun type parametric families. Journal of Mathematical Chemistry, 53(1), 430-449. doi:10.1007/s10910-014-0432-z es_ES
dc.description.references Wang, X., & Zhang, T. (2012). A family of Steffensen type methods with seventh-order convergence. Numerical Algorithms, 62(3), 429-444. doi:10.1007/s11075-012-9597-3 es_ES
dc.description.references Sharma, J. R., Guha, R. K., & Sharma, R. (2012). An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numerical Algorithms, 62(2), 307-323. doi:10.1007/s11075-012-9585-7 es_ES
dc.description.references Artidiello, S., Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2015). Multidimensional generalization of iterative methods for solving nonlinear problems by means of weight-function procedure. Applied Mathematics and Computation, 268, 1064-1071. doi:10.1016/j.amc.2015.07.024 es_ES
dc.description.references Kou, J., Li, Y., & Wang, X. (2007). A composite fourth-order iterative method for solving non-linear equations. Applied Mathematics and Computation, 184(2), 471-475. doi:10.1016/j.amc.2006.05.181 es_ES
dc.description.references Sharma, J. R. (2005). A composite third order Newton–Steffensen method for solving nonlinear equations. Applied Mathematics and Computation, 169(1), 242-246. doi:10.1016/j.amc.2004.10.040 es_ES
dc.description.references Alzahrani, A. K. H., Behl, R., & Alshomrani, A. S. (2018). Some higher-order iteration functions for solving nonlinear models. Applied Mathematics and Computation, 334, 80-93. doi:10.1016/j.amc.2018.03.120 es_ES
dc.description.references Narang, M., Bhatia, S., & Kanwar, V. (2016). New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations. Applied Mathematics and Computation, 275, 394-403. doi:10.1016/j.amc.2015.11.063 es_ES
dc.description.references Lotfi, T., Bakhtiari, P., Cordero, A., Mahdiani, K., & Torregrosa, J. R. (2014). Some new efficient multipoint iterative methods for solving nonlinear systems of equations. International Journal of Computer Mathematics, 92(9), 1921-1934. doi:10.1080/00207160.2014.946412 es_ES
dc.description.references Sharma, J. R., & Arora, H. (2013). Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo, 51(1), 193-210. doi:10.1007/s10092-013-0097-1 es_ES
dc.description.references Abbasbandy, S., Bakhtiari, P., Cordero, A., Torregrosa, J. R., & Lotfi, T. (2016). New efficient methods for solving nonlinear systems of equations with arbitrary even order. Applied Mathematics and Computation, 287-288, 94-103. doi:10.1016/j.amc.2016.04.038 es_ES
dc.description.references Hueso, J. L., Martínez, E., & Teruel, C. (2015). Convergence, efficiency and dynamics of new fourth and sixth order families of iterative methods for nonlinear systems. Journal of Computational and Applied Mathematics, 275, 412-420. doi:10.1016/j.cam.2014.06.010 es_ES
dc.description.references Simpson, R. B. (1975). A Method for the Numerical Determination of Bifurcation States of Nonlinear Systems of Equations. SIAM Journal on Numerical Analysis, 12(3), 439-451. doi:10.1137/0712034 es_ES
dc.description.references Kapania, R. K. (1990). A pseudo-spectral solution of 2-parameter Bratu’s equation. Computational Mechanics, 6(1), 55-63. doi:10.1007/bf00373799 es_ES
dc.description.references Grau-Sánchez, M., Noguera, M., & Amat, S. (2013). On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods. Journal of Computational and Applied Mathematics, 237(1), 363-372. doi:10.1016/j.cam.2012.06.005 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem