Rubio, J. de J., Cruz, D. R., Elias, I., Ochoa, G., Balcazar, R., & Aguilar, A. (2019). ANFIS system for classification of brain signals. Journal of Intelligent & Fuzzy Systems, 37(3), 4033-4041. doi:10.3233/jifs-190207
De Jesus Rubio, J. (2009). SOFMLS: Online Self-Organizing Fuzzy Modified Least-Squares Network. IEEE Transactions on Fuzzy Systems, 17(6), 1296-1309. doi:10.1109/tfuzz.2009.2029569
Giap, C. N., Son, L. H., & Chiclana, F. (2018). Dynamic structural neural network. Journal of Intelligent & Fuzzy Systems, 34(4), 2479-2490. doi:10.3233/jifs-171947
[+]
Rubio, J. de J., Cruz, D. R., Elias, I., Ochoa, G., Balcazar, R., & Aguilar, A. (2019). ANFIS system for classification of brain signals. Journal of Intelligent & Fuzzy Systems, 37(3), 4033-4041. doi:10.3233/jifs-190207
De Jesus Rubio, J. (2009). SOFMLS: Online Self-Organizing Fuzzy Modified Least-Squares Network. IEEE Transactions on Fuzzy Systems, 17(6), 1296-1309. doi:10.1109/tfuzz.2009.2029569
Giap, C. N., Son, L. H., & Chiclana, F. (2018). Dynamic structural neural network. Journal of Intelligent & Fuzzy Systems, 34(4), 2479-2490. doi:10.3233/jifs-171947
De Jesús Rubio, J., Garcia, E., Ochoa, G., Elias, I., Cruz, D. R., Balcazar, R., … Novoa, J. F. (2019). Unscented Kalman filter for learning of a solar dryer and a greenhouse. Journal of Intelligent & Fuzzy Systems, 37(5), 6731-6741. doi:10.3233/jifs-190216
Awawdeh, F. (2009). On new iterative method for solving systems of nonlinear equations. Numerical Algorithms, 54(3), 395-409. doi:10.1007/s11075-009-9342-8
Grosan, C., & Abraham, A. (2008). A New Approach for Solving Nonlinear Equations Systems. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 38(3), 698-714. doi:10.1109/tsmca.2008.918599
Lin, Y., Bao, L., & Jia, X. (2010). Convergence analysis of a variant of the Newton method for solving nonlinear equations. Computers & Mathematics with Applications, 59(6), 2121-2127. doi:10.1016/j.camwa.2009.12.017
Tsoulos, I. G., & Stavrakoudis, A. (2010). On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods. Nonlinear Analysis: Real World Applications, 11(4), 2465-2471. doi:10.1016/j.nonrwa.2009.08.003
Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z
Cordero, A., Maimó, J. G., Torregrosa, J. R., & Vassileva, M. P. (2014). Solving nonlinear problems by Ostrowski–Chun type parametric families. Journal of Mathematical Chemistry, 53(1), 430-449. doi:10.1007/s10910-014-0432-z
Wang, X., & Zhang, T. (2012). A family of Steffensen type methods with seventh-order convergence. Numerical Algorithms, 62(3), 429-444. doi:10.1007/s11075-012-9597-3
Sharma, J. R., Guha, R. K., & Sharma, R. (2012). An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numerical Algorithms, 62(2), 307-323. doi:10.1007/s11075-012-9585-7
Artidiello, S., Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2015). Multidimensional generalization of iterative methods for solving nonlinear problems by means of weight-function procedure. Applied Mathematics and Computation, 268, 1064-1071. doi:10.1016/j.amc.2015.07.024
Kou, J., Li, Y., & Wang, X. (2007). A composite fourth-order iterative method for solving non-linear equations. Applied Mathematics and Computation, 184(2), 471-475. doi:10.1016/j.amc.2006.05.181
Sharma, J. R. (2005). A composite third order Newton–Steffensen method for solving nonlinear equations. Applied Mathematics and Computation, 169(1), 242-246. doi:10.1016/j.amc.2004.10.040
Alzahrani, A. K. H., Behl, R., & Alshomrani, A. S. (2018). Some higher-order iteration functions for solving nonlinear models. Applied Mathematics and Computation, 334, 80-93. doi:10.1016/j.amc.2018.03.120
Narang, M., Bhatia, S., & Kanwar, V. (2016). New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations. Applied Mathematics and Computation, 275, 394-403. doi:10.1016/j.amc.2015.11.063
Lotfi, T., Bakhtiari, P., Cordero, A., Mahdiani, K., & Torregrosa, J. R. (2014). Some new efficient multipoint iterative methods for solving nonlinear systems of equations. International Journal of Computer Mathematics, 92(9), 1921-1934. doi:10.1080/00207160.2014.946412
Sharma, J. R., & Arora, H. (2013). Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo, 51(1), 193-210. doi:10.1007/s10092-013-0097-1
Abbasbandy, S., Bakhtiari, P., Cordero, A., Torregrosa, J. R., & Lotfi, T. (2016). New efficient methods for solving nonlinear systems of equations with arbitrary even order. Applied Mathematics and Computation, 287-288, 94-103. doi:10.1016/j.amc.2016.04.038
Hueso, J. L., Martínez, E., & Teruel, C. (2015). Convergence, efficiency and dynamics of new fourth and sixth order families of iterative methods for nonlinear systems. Journal of Computational and Applied Mathematics, 275, 412-420. doi:10.1016/j.cam.2014.06.010
Simpson, R. B. (1975). A Method for the Numerical Determination of Bifurcation States of Nonlinear Systems of Equations. SIAM Journal on Numerical Analysis, 12(3), 439-451. doi:10.1137/0712034
Kapania, R. K. (1990). A pseudo-spectral solution of 2-parameter Bratu’s equation. Computational Mechanics, 6(1), 55-63. doi:10.1007/bf00373799
Grau-Sánchez, M., Noguera, M., & Amat, S. (2013). On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods. Journal of Computational and Applied Mathematics, 237(1), 363-372. doi:10.1016/j.cam.2012.06.005
[-]