- -

Production strategies of asymmetric BaCe0.65Zr0.20Y0.15O3-delta - Ce(0.8)Gd(0.2)O(2-delta) membrane for hydrogen separation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Production strategies of asymmetric BaCe0.65Zr0.20Y0.15O3-delta - Ce(0.8)Gd(0.2)O(2-delta) membrane for hydrogen separation

Mostrar el registro completo del ítem

Mercadelli, E.; Gondolini, A.; Montaleone, D.; Pinasco, P.; Escolástico Rozalén, S.; Serra Alfaro, JM.; Sanson, A. (2020). Production strategies of asymmetric BaCe0.65Zr0.20Y0.15O3-delta - Ce(0.8)Gd(0.2)O(2-delta) membrane for hydrogen separation. International Journal of Hydrogen Energy. 45(12):7468-7478. https://doi.org/10.1016/j.ijhydene.2019.03.148

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160984

Ficheros en el ítem

Metadatos del ítem

Título: Production strategies of asymmetric BaCe0.65Zr0.20Y0.15O3-delta - Ce(0.8)Gd(0.2)O(2-delta) membrane for hydrogen separation
Autor: Mercadelli, Elisa Gondolini, Angela Montaleone, Daniel Pinasco, Paola Escolástico Rozalén, Sonia Serra Alfaro, José Manuel Sanson, Alessandra
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Mixed proton and electron conductor ceramic composites are among the most promising materials for hydrogen separation membrane technology especially if designed in an asymmetrical configuration (thin membrane supported ...[+]
Palabras clave: Tape casting , BCZY-GDC , Ceramic membranes , Microstructure
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
International Journal of Hydrogen Energy. (issn: 0360-3199 )
DOI: 10.1016/j.ijhydene.2019.03.148
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ijhydene.2019.03.148
Agradecimientos:
This work has been funded by the agreement between the Italian Ministry of Economic Development and the Italian National Research Council "Ricerca di sistema elettrico nazionale"
Tipo: Artículo

References

Buonomenna, M. G., & Bae, J. (2015). Membrane processes and renewable energies. Renewable and Sustainable Energy Reviews, 43, 1343-1398. doi:10.1016/j.rser.2014.11.091

Adhikari, S., & Fernando, S. (2006). Hydrogen Membrane Separation Techniques. Industrial & Engineering Chemistry Research, 45(3), 875-881. doi:10.1021/ie050644l

Tan, X., Tan, X., Yang, N., Meng, B., Zhang, K., & Liu, S. (2014). High performance BaCe0.8Y0.2O3−a (BCY) hollow fibre membranes for hydrogen permeation. Ceramics International, 40(2), 3131-3138. doi:10.1016/j.ceramint.2013.09.132 [+]
Buonomenna, M. G., & Bae, J. (2015). Membrane processes and renewable energies. Renewable and Sustainable Energy Reviews, 43, 1343-1398. doi:10.1016/j.rser.2014.11.091

Adhikari, S., & Fernando, S. (2006). Hydrogen Membrane Separation Techniques. Industrial & Engineering Chemistry Research, 45(3), 875-881. doi:10.1021/ie050644l

Tan, X., Tan, X., Yang, N., Meng, B., Zhang, K., & Liu, S. (2014). High performance BaCe0.8Y0.2O3−a (BCY) hollow fibre membranes for hydrogen permeation. Ceramics International, 40(2), 3131-3138. doi:10.1016/j.ceramint.2013.09.132

Song, J., Kang, J., Tan, X., Meng, B., & Liu, S. (2016). Proton conducting perovskite hollow fibre membranes with surface catalytic modification for enhanced hydrogen separation. Journal of the European Ceramic Society, 36(7), 1669-1677. doi:10.1016/j.jeurceramsoc.2016.01.006

Zhu, Z., Hou, J., He, W., & Liu, W. (2016). High-performance Ba(Zr 0.1 Ce 0.7 Y 0.2 )O 3−δ asymmetrical ceramic membrane with external short circuit for hydrogen separation. Journal of Alloys and Compounds, 660, 231-234. doi:10.1016/j.jallcom.2015.11.065

CHENG, S., GUPTA, V., & LIN, J. (2005). Synthesis and hydrogen permeation properties of asymmetric proton-conducting ceramic membranes. Solid State Ionics, 176(35-36), 2653-2662. doi:10.1016/j.ssi.2005.07.005

Montaleone, D., Mercadelli, E., Gondolini, A., Pinasco, P., & Sanson, A. (2017). On the compatibility of dual phase BaCe0.65Zr0.2Y0.15O3-based membrane for hydrogen separation application. Ceramics International, 43(13), 10151-10157. doi:10.1016/j.ceramint.2017.05.039

Wang, H., Wang, X., Meng, B., Tan, X., Loh, K. S., Sunarso, J., & Liu, S. (2018). Perovskite-based mixed protonic–electronic conducting membranes for hydrogen separation: Recent status and advances. Journal of Industrial and Engineering Chemistry, 60, 297-306. doi:10.1016/j.jiec.2017.11.016

Hashim, S. S., Somalu, M. R., Loh, K. S., Liu, S., Zhou, W., & Sunarso, J. (2018). Perovskite-based proton conducting membranes for hydrogen separation: A review. International Journal of Hydrogen Energy, 43(32), 15281-15305. doi:10.1016/j.ijhydene.2018.06.045

Shang, Y., Wei, L., Meng, X., Meng, B., Yang, N., Sunarso, J., & Liu, S. (2018). CO 2 -enhanced hydrogen permeability of dual-layered A-site deficient Ba 0.95 Ce 0.85 Tb 0.05 Zr 0.1 O 3-δ -based hollow fiber membrane. Journal of Membrane Science, 546, 82-89. doi:10.1016/j.memsci.2017.10.012

Ivanova, M. E., Escolástico, S., Balaguer, M., Palisaitis, J., Sohn, Y. J., Meulenberg, W. A., … Serra, J. M. (2016). Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ at intermediate temperatures. Scientific Reports, 6(1). doi:10.1038/srep34773

Rosensteel, W. A., Ricote, S., & Sullivan, N. P. (2016). Hydrogen permeation through dense BaCe 0.8 Y 0.2 O 3−δ – Ce 0.8 Y 0.2 O 2−δ composite-ceramic hydrogen separation membranes. International Journal of Hydrogen Energy, 41(4), 2598-2606. doi:10.1016/j.ijhydene.2015.11.053

Liu, Y., Dai, L., Zhang, W., Zhou, H., Li, Y., & Wang, L. (2016). Preparation of dual-phase composite BaCe0.8Y0.2O3/Ce0.8Y0.2O2 and its application for hydrogen permeation. Ceramics International, 42(5), 6391-6398. doi:10.1016/j.ceramint.2016.01.036

Rebollo, E., Mortalò, C., Escolástico, S., Boldrini, S., Barison, S., Serra, J. M., & Fabrizio, M. (2015). Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3−δ and Y- or Gd-doped ceria. Energy & Environmental Science, 8(12), 3675-3686. doi:10.1039/c5ee01793a

Mortalò, C., Rebollo, E., Escolástico, S., Deambrosis, S., Haas-Santo, K., Rancan, M., … Fabrizio, M. (2018). Enhanced sulfur tolerance of BaCe0.65Zr0.20Y0.15O3-δ-Ce0.85Gd0.15O2-δ composite for hydrogen separation membranes. Journal of Membrane Science, 564, 123-132. doi:10.1016/j.memsci.2018.07.015

Gade, S. K., Keeling, M. K., Davidson, A. P., Hatlevik, O., & Way, J. D. (2009). Palladium–ruthenium membranes for hydrogen separation fabricated by electroless co-deposition. International Journal of Hydrogen Energy, 34(15), 6484-6491. doi:10.1016/j.ijhydene.2009.06.037

Al-Mufachi, N. A., Rees, N. V., & Steinberger-Wilkens, R. (2015). Hydrogen selective membranes: A review of palladium-based dense metal membranes. Renewable and Sustainable Energy Reviews, 47, 540-551. doi:10.1016/j.rser.2015.03.026

Tsai, Y.-C., Lin, C.-C., Lin, W.-L., Wang, J.-H., Chen, S.-Y., Lin, P., & Wu, P.-W. (2015). Palladium based cermet composite for hydrogen separation at elevated temperature. Journal of Power Sources, 274, 965-970. doi:10.1016/j.jpowsour.2014.10.085

Hamakawa, S. (2002). Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3−α thin films. Solid State Ionics, 148(1-2), 71-81. doi:10.1016/s0167-2738(02)00047-4

Gondolini, A., Mercadelli, E., Sangiorgi, A., & Sanson, A. (2017). Integration of Ni-GDC layer on a NiCrAl metal foam for SOFC application. Journal of the European Ceramic Society, 37(3), 1023-1030. doi:10.1016/j.jeurceramsoc.2016.09.021

Viviani, M., Canu, G., Carpanese, M. P., Barbucci, A., Sanson, A., Mercadelli, E., … Ansar, S.-A. (2012). Dual Cells with Mixed Protonic-Anionic Conductivity for Reversible SOFC/SOEC Operation. Energy Procedia, 28, 182-189. doi:10.1016/j.egypro.2012.08.052

Gondolini, A., Mercadelli, E., Pinasco, P., Zanelli, C., Melandri, C., & Sanson, A. (2012). Alternative production route for supporting La0.8Sr0.2MnO3−δ-Ce0.8Gd0.2O2−δ (LSM-GDC). International Journal of Hydrogen Energy, 37(10), 8572-8581. doi:10.1016/j.ijhydene.2012.02.091

Mercadelli, E., Gondolini, A., Pinasco, P., & Sanson, A. (2017). Stainless steel porous substrates produced by tape casting. Metals and Materials International, 23(1), 184-192. doi:10.1007/s12540-017-6336-2

Mercadelli, E., Sanson, A., Pinasco, P., Roncari, E., & Galassi, C. (2011). Influence of carbon black on slurry compositions for tape cast porous piezoelectric ceramics. Ceramics International, 37(7), 2143-2149. doi:10.1016/j.ceramint.2011.03.058

Montaleone, D., Mercadelli, E., Gondolini, A., Ardit, M., Pinasco, P., & Sanson, A. (2019). Role of the sintering atmosphere in the densification and phase composition of asymmetric BCZY-GDC composite membrane. Journal of the European Ceramic Society, 39(1), 21-29. doi:10.1016/j.jeurceramsoc.2018.01.043

Escolástico, S., Solı́s, C., Kjølseth, C., & Serra, J. M. (2017). Catalytic Layer Optimization for Hydrogen Permeation Membranes Based on La5.5WO11.25-δ/La0.87Sr0.13CrO3-δ Composites. ACS Applied Materials & Interfaces, 9(41), 35749-35756. doi:10.1021/acsami.7b08995

Escolástico, S., Somacescu, S., & Serra, J. M. (2015). Tailoring mixed ionic–electronic conduction in H2 permeable membranes based on the system Nd5.5W1−xMoxO11.25−δ. Journal of Materials Chemistry A, 3(2), 719-731. doi:10.1039/c4ta03699a

Montaleone, D., Mercadelli, E., Escolástico, S., Gondolini, A., Serra, J. M., & Sanson, A. (2018). All-ceramic asymmetric membranes with superior hydrogen permeation. Journal of Materials Chemistry A, 6(32), 15718-15727. doi:10.1039/c8ta04764b

Deibert, W., Ivanova, M. E., Meulenberg, W. A., Vaßen, R., & Guillon, O. (2015). Preparation and sintering behaviour of La5.4WO12− asymmetric membranes with optimised microstructure for hydrogen separation. Journal of Membrane Science, 492, 439-451. doi:10.1016/j.memsci.2015.05.065

Zhan, S., Zhu, X., Ji, B., Wang, W., Zhang, X., Wang, J., … Lin, L. (2009). Preparation and hydrogen permeation of SrCe0.95Y0.05O3−δ asymmetrical membranes. Journal of Membrane Science, 340(1-2), 241-248. doi:10.1016/j.memsci.2009.05.037

Mercadelli, E., Montaleone, D., Gondolini, A., Pinasco, P., & Sanson, A. (2017). Tape-cast asymmetric membranes for hydrogen separation. Ceramics International, 43(11), 8010-8017. doi:10.1016/j.ceramint.2017.03.099

Babilo, P., & Haile, S. M. (2005). Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO. Journal of the American Ceramic Society, 88(9), 2362-2368. doi:10.1111/j.1551-2916.2005.00449.x

Zhang, C., Zhao, H., Xu, N., Li, X., & Chen, N. (2009). Influence of ZnO addition on the properties of high temperature proton conductor Ba1.03Ce0.5Zr0.4Y0.1O3−δ synthesized via citrate–nitrate method. International Journal of Hydrogen Energy, 34(6), 2739-2746. doi:10.1016/j.ijhydene.2009.01.061

Peng, C., Melnik, J., Luo, J.-L., Sanger, A. R., & Chuang, K. T. (2010). BaZr0.8Y0.2O3−δ electrolyte with and without ZnO sintering aid: Preparation and characterization. Solid State Ionics, 181(29-30), 1372-1377. doi:10.1016/j.ssi.2010.07.026

Ricote, S., Bonanos, N., Manerbino, A., & Coors, W. G. (2012). Conductivity study of dense BaCexZr(0.9−x)Y0.1O(3−δ) prepared by solid state reactive sintering at 1500 °C. International Journal of Hydrogen Energy, 37(9), 7954-7961. doi:10.1016/j.ijhydene.2011.08.118

Wei, Y., Xue, J., Wang, H., & Caro, J. (2015). Hydrogen permeability and stability of BaCe0.85Tb0.05Zr0.1O3− asymmetric membranes. Journal of Membrane Science, 488, 173-181. doi:10.1016/j.memsci.2015.04.035

Sun, W., Shi, Z., & Liu, W. (2013). Considerable Hydrogen Permeation Behavior through a Dense Ce0.8Sm0.2O2-δ(SDC) Asymmetric Thick Film. Journal of The Electrochemical Society, 160(6), F585-F590. doi:10.1149/2.073306jes

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem