- -

Production strategies of asymmetric BaCe0.65Zr0.20Y0.15O3-delta - Ce(0.8)Gd(0.2)O(2-delta) membrane for hydrogen separation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Production strategies of asymmetric BaCe0.65Zr0.20Y0.15O3-delta - Ce(0.8)Gd(0.2)O(2-delta) membrane for hydrogen separation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mercadelli, Elisa es_ES
dc.contributor.author Gondolini, Angela es_ES
dc.contributor.author Montaleone, Daniel es_ES
dc.contributor.author Pinasco, Paola es_ES
dc.contributor.author Escolástico Rozalén, Sonia es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.contributor.author Sanson, Alessandra es_ES
dc.date.accessioned 2021-02-10T04:31:37Z
dc.date.available 2021-02-10T04:31:37Z
dc.date.issued 2020-03-04 es_ES
dc.identifier.issn 0360-3199 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160984
dc.description.abstract [EN] Mixed proton and electron conductor ceramic composites are among the most promising materials for hydrogen separation membrane technology especially if designed in an asymmetrical configuration (thin membrane supported onto a thicker porous substrate). However a precise processing optimization is needed to effectively obtain planar and crack free asymmetrical membranes with suitable microstructure and composition without affecting their hydrogen separation efficiency. This work highlights for the first time the most critical issues linked to the tape casting process used to obtain BaCe0.65Zr0.20Y0.15O3-delta - Ce0.8Gd0.2O2-delta (BCZY-GDC) asymmetrical membranes for H-2 separation. The critical role of the co-firing process, sintering aid and atmosphere was critically investigated. The optimization of the production strategy allowed to obtain asymmetric membranes constituted by a dense 20 mu m-thick ceramic-ceramic composite layer supported by a porous (36%) 750 mu m-thick BCZY-GDC substrate. The asymmetric membranes here reported showed H2 fluxes (0.47 mL min(-1) cm(-2) at 750 degrees C) among the highest obtained for an all-ceramic membrane. es_ES
dc.description.sponsorship This work has been funded by the agreement between the Italian Ministry of Economic Development and the Italian National Research Council "Ricerca di sistema elettrico nazionale" es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Hydrogen Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Tape casting es_ES
dc.subject BCZY-GDC es_ES
dc.subject Ceramic membranes es_ES
dc.subject Microstructure es_ES
dc.title Production strategies of asymmetric BaCe0.65Zr0.20Y0.15O3-delta - Ce(0.8)Gd(0.2)O(2-delta) membrane for hydrogen separation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ijhydene.2019.03.148 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Mercadelli, E.; Gondolini, A.; Montaleone, D.; Pinasco, P.; Escolástico Rozalén, S.; Serra Alfaro, JM.; Sanson, A. (2020). Production strategies of asymmetric BaCe0.65Zr0.20Y0.15O3-delta - Ce(0.8)Gd(0.2)O(2-delta) membrane for hydrogen separation. International Journal of Hydrogen Energy. 45(12):7468-7478. https://doi.org/10.1016/j.ijhydene.2019.03.148 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijhydene.2019.03.148 es_ES
dc.description.upvformatpinicio 7468 es_ES
dc.description.upvformatpfin 7478 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 45 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\417947 es_ES
dc.description.references Buonomenna, M. G., & Bae, J. (2015). Membrane processes and renewable energies. Renewable and Sustainable Energy Reviews, 43, 1343-1398. doi:10.1016/j.rser.2014.11.091 es_ES
dc.description.references Adhikari, S., & Fernando, S. (2006). Hydrogen Membrane Separation Techniques. Industrial & Engineering Chemistry Research, 45(3), 875-881. doi:10.1021/ie050644l es_ES
dc.description.references Tan, X., Tan, X., Yang, N., Meng, B., Zhang, K., & Liu, S. (2014). High performance BaCe0.8Y0.2O3−a (BCY) hollow fibre membranes for hydrogen permeation. Ceramics International, 40(2), 3131-3138. doi:10.1016/j.ceramint.2013.09.132 es_ES
dc.description.references Song, J., Kang, J., Tan, X., Meng, B., & Liu, S. (2016). Proton conducting perovskite hollow fibre membranes with surface catalytic modification for enhanced hydrogen separation. Journal of the European Ceramic Society, 36(7), 1669-1677. doi:10.1016/j.jeurceramsoc.2016.01.006 es_ES
dc.description.references Zhu, Z., Hou, J., He, W., & Liu, W. (2016). High-performance Ba(Zr 0.1 Ce 0.7 Y 0.2 )O 3−δ asymmetrical ceramic membrane with external short circuit for hydrogen separation. Journal of Alloys and Compounds, 660, 231-234. doi:10.1016/j.jallcom.2015.11.065 es_ES
dc.description.references CHENG, S., GUPTA, V., & LIN, J. (2005). Synthesis and hydrogen permeation properties of asymmetric proton-conducting ceramic membranes. Solid State Ionics, 176(35-36), 2653-2662. doi:10.1016/j.ssi.2005.07.005 es_ES
dc.description.references Montaleone, D., Mercadelli, E., Gondolini, A., Pinasco, P., & Sanson, A. (2017). On the compatibility of dual phase BaCe0.65Zr0.2Y0.15O3-based membrane for hydrogen separation application. Ceramics International, 43(13), 10151-10157. doi:10.1016/j.ceramint.2017.05.039 es_ES
dc.description.references Wang, H., Wang, X., Meng, B., Tan, X., Loh, K. S., Sunarso, J., & Liu, S. (2018). Perovskite-based mixed protonic–electronic conducting membranes for hydrogen separation: Recent status and advances. Journal of Industrial and Engineering Chemistry, 60, 297-306. doi:10.1016/j.jiec.2017.11.016 es_ES
dc.description.references Hashim, S. S., Somalu, M. R., Loh, K. S., Liu, S., Zhou, W., & Sunarso, J. (2018). Perovskite-based proton conducting membranes for hydrogen separation: A review. International Journal of Hydrogen Energy, 43(32), 15281-15305. doi:10.1016/j.ijhydene.2018.06.045 es_ES
dc.description.references Shang, Y., Wei, L., Meng, X., Meng, B., Yang, N., Sunarso, J., & Liu, S. (2018). CO 2 -enhanced hydrogen permeability of dual-layered A-site deficient Ba 0.95 Ce 0.85 Tb 0.05 Zr 0.1 O 3-δ -based hollow fiber membrane. Journal of Membrane Science, 546, 82-89. doi:10.1016/j.memsci.2017.10.012 es_ES
dc.description.references Ivanova, M. E., Escolástico, S., Balaguer, M., Palisaitis, J., Sohn, Y. J., Meulenberg, W. A., … Serra, J. M. (2016). Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ at intermediate temperatures. Scientific Reports, 6(1). doi:10.1038/srep34773 es_ES
dc.description.references Rosensteel, W. A., Ricote, S., & Sullivan, N. P. (2016). Hydrogen permeation through dense BaCe 0.8 Y 0.2 O 3−δ – Ce 0.8 Y 0.2 O 2−δ composite-ceramic hydrogen separation membranes. International Journal of Hydrogen Energy, 41(4), 2598-2606. doi:10.1016/j.ijhydene.2015.11.053 es_ES
dc.description.references Liu, Y., Dai, L., Zhang, W., Zhou, H., Li, Y., & Wang, L. (2016). Preparation of dual-phase composite BaCe0.8Y0.2O3/Ce0.8Y0.2O2 and its application for hydrogen permeation. Ceramics International, 42(5), 6391-6398. doi:10.1016/j.ceramint.2016.01.036 es_ES
dc.description.references Rebollo, E., Mortalò, C., Escolástico, S., Boldrini, S., Barison, S., Serra, J. M., & Fabrizio, M. (2015). Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3−δ and Y- or Gd-doped ceria. Energy & Environmental Science, 8(12), 3675-3686. doi:10.1039/c5ee01793a es_ES
dc.description.references Mortalò, C., Rebollo, E., Escolástico, S., Deambrosis, S., Haas-Santo, K., Rancan, M., … Fabrizio, M. (2018). Enhanced sulfur tolerance of BaCe0.65Zr0.20Y0.15O3-δ-Ce0.85Gd0.15O2-δ composite for hydrogen separation membranes. Journal of Membrane Science, 564, 123-132. doi:10.1016/j.memsci.2018.07.015 es_ES
dc.description.references Gade, S. K., Keeling, M. K., Davidson, A. P., Hatlevik, O., & Way, J. D. (2009). Palladium–ruthenium membranes for hydrogen separation fabricated by electroless co-deposition. International Journal of Hydrogen Energy, 34(15), 6484-6491. doi:10.1016/j.ijhydene.2009.06.037 es_ES
dc.description.references Al-Mufachi, N. A., Rees, N. V., & Steinberger-Wilkens, R. (2015). Hydrogen selective membranes: A review of palladium-based dense metal membranes. Renewable and Sustainable Energy Reviews, 47, 540-551. doi:10.1016/j.rser.2015.03.026 es_ES
dc.description.references Tsai, Y.-C., Lin, C.-C., Lin, W.-L., Wang, J.-H., Chen, S.-Y., Lin, P., & Wu, P.-W. (2015). Palladium based cermet composite for hydrogen separation at elevated temperature. Journal of Power Sources, 274, 965-970. doi:10.1016/j.jpowsour.2014.10.085 es_ES
dc.description.references Hamakawa, S. (2002). Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3−α thin films. Solid State Ionics, 148(1-2), 71-81. doi:10.1016/s0167-2738(02)00047-4 es_ES
dc.description.references Gondolini, A., Mercadelli, E., Sangiorgi, A., & Sanson, A. (2017). Integration of Ni-GDC layer on a NiCrAl metal foam for SOFC application. Journal of the European Ceramic Society, 37(3), 1023-1030. doi:10.1016/j.jeurceramsoc.2016.09.021 es_ES
dc.description.references Viviani, M., Canu, G., Carpanese, M. P., Barbucci, A., Sanson, A., Mercadelli, E., … Ansar, S.-A. (2012). Dual Cells with Mixed Protonic-Anionic Conductivity for Reversible SOFC/SOEC Operation. Energy Procedia, 28, 182-189. doi:10.1016/j.egypro.2012.08.052 es_ES
dc.description.references Gondolini, A., Mercadelli, E., Pinasco, P., Zanelli, C., Melandri, C., & Sanson, A. (2012). Alternative production route for supporting La0.8Sr0.2MnO3−δ-Ce0.8Gd0.2O2−δ (LSM-GDC). International Journal of Hydrogen Energy, 37(10), 8572-8581. doi:10.1016/j.ijhydene.2012.02.091 es_ES
dc.description.references Mercadelli, E., Gondolini, A., Pinasco, P., & Sanson, A. (2017). Stainless steel porous substrates produced by tape casting. Metals and Materials International, 23(1), 184-192. doi:10.1007/s12540-017-6336-2 es_ES
dc.description.references Mercadelli, E., Sanson, A., Pinasco, P., Roncari, E., & Galassi, C. (2011). Influence of carbon black on slurry compositions for tape cast porous piezoelectric ceramics. Ceramics International, 37(7), 2143-2149. doi:10.1016/j.ceramint.2011.03.058 es_ES
dc.description.references Montaleone, D., Mercadelli, E., Gondolini, A., Ardit, M., Pinasco, P., & Sanson, A. (2019). Role of the sintering atmosphere in the densification and phase composition of asymmetric BCZY-GDC composite membrane. Journal of the European Ceramic Society, 39(1), 21-29. doi:10.1016/j.jeurceramsoc.2018.01.043 es_ES
dc.description.references Escolástico, S., Solı́s, C., Kjølseth, C., & Serra, J. M. (2017). Catalytic Layer Optimization for Hydrogen Permeation Membranes Based on La5.5WO11.25-δ/La0.87Sr0.13CrO3-δ Composites. ACS Applied Materials & Interfaces, 9(41), 35749-35756. doi:10.1021/acsami.7b08995 es_ES
dc.description.references Escolástico, S., Somacescu, S., & Serra, J. M. (2015). Tailoring mixed ionic–electronic conduction in H2 permeable membranes based on the system Nd5.5W1−xMoxO11.25−δ. Journal of Materials Chemistry A, 3(2), 719-731. doi:10.1039/c4ta03699a es_ES
dc.description.references Montaleone, D., Mercadelli, E., Escolástico, S., Gondolini, A., Serra, J. M., & Sanson, A. (2018). All-ceramic asymmetric membranes with superior hydrogen permeation. Journal of Materials Chemistry A, 6(32), 15718-15727. doi:10.1039/c8ta04764b es_ES
dc.description.references Deibert, W., Ivanova, M. E., Meulenberg, W. A., Vaßen, R., & Guillon, O. (2015). Preparation and sintering behaviour of La5.4WO12− asymmetric membranes with optimised microstructure for hydrogen separation. Journal of Membrane Science, 492, 439-451. doi:10.1016/j.memsci.2015.05.065 es_ES
dc.description.references Zhan, S., Zhu, X., Ji, B., Wang, W., Zhang, X., Wang, J., … Lin, L. (2009). Preparation and hydrogen permeation of SrCe0.95Y0.05O3−δ asymmetrical membranes. Journal of Membrane Science, 340(1-2), 241-248. doi:10.1016/j.memsci.2009.05.037 es_ES
dc.description.references Mercadelli, E., Montaleone, D., Gondolini, A., Pinasco, P., & Sanson, A. (2017). Tape-cast asymmetric membranes for hydrogen separation. Ceramics International, 43(11), 8010-8017. doi:10.1016/j.ceramint.2017.03.099 es_ES
dc.description.references Babilo, P., & Haile, S. M. (2005). Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO. Journal of the American Ceramic Society, 88(9), 2362-2368. doi:10.1111/j.1551-2916.2005.00449.x es_ES
dc.description.references Zhang, C., Zhao, H., Xu, N., Li, X., & Chen, N. (2009). Influence of ZnO addition on the properties of high temperature proton conductor Ba1.03Ce0.5Zr0.4Y0.1O3−δ synthesized via citrate–nitrate method. International Journal of Hydrogen Energy, 34(6), 2739-2746. doi:10.1016/j.ijhydene.2009.01.061 es_ES
dc.description.references Peng, C., Melnik, J., Luo, J.-L., Sanger, A. R., & Chuang, K. T. (2010). BaZr0.8Y0.2O3−δ electrolyte with and without ZnO sintering aid: Preparation and characterization. Solid State Ionics, 181(29-30), 1372-1377. doi:10.1016/j.ssi.2010.07.026 es_ES
dc.description.references Ricote, S., Bonanos, N., Manerbino, A., & Coors, W. G. (2012). Conductivity study of dense BaCexZr(0.9−x)Y0.1O(3−δ) prepared by solid state reactive sintering at 1500 °C. International Journal of Hydrogen Energy, 37(9), 7954-7961. doi:10.1016/j.ijhydene.2011.08.118 es_ES
dc.description.references Wei, Y., Xue, J., Wang, H., & Caro, J. (2015). Hydrogen permeability and stability of BaCe0.85Tb0.05Zr0.1O3− asymmetric membranes. Journal of Membrane Science, 488, 173-181. doi:10.1016/j.memsci.2015.04.035 es_ES
dc.description.references Sun, W., Shi, Z., & Liu, W. (2013). Considerable Hydrogen Permeation Behavior through a Dense Ce0.8Sm0.2O2-δ(SDC) Asymmetric Thick Film. Journal of The Electrochemical Society, 160(6), F585-F590. doi:10.1149/2.073306jes es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem