- -

Design of acoustic metamaterials made of Helmholtz resonators for perfect absorption by using the complex frequency plane

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

Design of acoustic metamaterials made of Helmholtz resonators for perfect absorption by using the complex frequency plane

Show full item record

Romero-García, V.; Jimenez, N.; Theocharis, G.; Achilleos, V.; Merkel, A.; Richoux, O.; Tournat, V.... (2020). Design of acoustic metamaterials made of Helmholtz resonators for perfect absorption by using the complex frequency plane. Comptes Rendus Physique. 21(7-8):713-749. https://doi.org/10.5802/crphys.32

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160985

Files in this item

Item Metadata

Title: Design of acoustic metamaterials made of Helmholtz resonators for perfect absorption by using the complex frequency plane
Author: Romero-García, V. Jimenez, Noe Theocharis, G. Achilleos, V. Merkel, A. Richoux, O. Tournat, V. Groby, J-P Pagneux, V.
UPV Unit: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Issued date:
[Otros] Dans cette revue, nous présentons des résultats sur l'absorption acoustique parfaite sub-longueur d'onde faisant appel à des métamatériaux acoustiques avec des résonateurs Helmholtz pour différentes configurations. ...[+]

[EN] In this review, we present the results on sub-wavelength perfect acoustic absorption using acoustic metamaterials made of Helmholtz resonators with different setups. Low frequency perfect absorption requires to increase ...[+]
Subjects: Acoustic metamaterials , Perfect absorption , Helmholtz resonators , Locally resonant materials , Critical coupling , Complex frequency plane , Métamatériaux acoustiques , Absorption parfaite , Résonateurs de Helmholtz , Résonateurs locaux , Couplage critique , Plan des fréquences complexes
Copyrigths: Reconocimiento (by)
Comptes Rendus Physique. (issn: 1631-0705 )
DOI: 10.5802/crphys.32
Publisher version: https://doi.org/10.5802/crphys.32
Project ID:
info:eu-repo/grantAgreement/COST//CA15125/EU/Designs for Noise Reducing Materials and Structures (DENORMS)/
info:eu-repo/grantAgreement/ANR//ANR-18-CE08-0021/FR/METARoom: deep subwavelength reconfigurable acoustic treatments for room acoustics/METARoom/
The authors gratefully acknowledge the ANR-RGC METARoom (ANR-18-CE08-0021) project and the project HYPERMETA funded under the program Étoiles Montantes of the Région Pays de la Loire. NJ acknowledges financial support from ...[+]
Type: Artículo


[1] Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells, Nat. Mater., Volume 4 (2005) no. 6, pp. 455-459

[2] Derode, A.; Roux, P.; Fink, M. Robust acoustic time reversal with high-order multiple scattering, Phys. Rev. Lett., Volume 75 (1995) no. 23, pp. 4206-4209

[3] Chong, Y.; Ge, L.; Cao, H.; Stone, A. D. Coherent perfect absorbers: time-reversed lasers, Phys. Rev. Lett., Volume 105 (2010) no. 5, 053901 [+]
[1] Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells, Nat. Mater., Volume 4 (2005) no. 6, pp. 455-459

[2] Derode, A.; Roux, P.; Fink, M. Robust acoustic time reversal with high-order multiple scattering, Phys. Rev. Lett., Volume 75 (1995) no. 23, pp. 4206-4209

[3] Chong, Y.; Ge, L.; Cao, H.; Stone, A. D. Coherent perfect absorbers: time-reversed lasers, Phys. Rev. Lett., Volume 105 (2010) no. 5, 053901

[4] Mei, J.; Ma, G.; Yang, M.; Yang, Z.; Wen, W.; Sheng, P. Dark acoustic metamaterials as super absorbers for low-frequency sound, Nat. Commun., Volume 3 (2012), 756

[5] Engheta, N.; Ziolkowski, R. W. Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, 2006

[6] Romero-García, V.; Hladky-Hennion, A. Fundamentals and Applications of Acoustic Metamaterials: From Seismic to Radio Frequency, ISTE Willey, 2019

[7] Craster, R.; Guenneau, S. Acoustic Metamaterials, Springer Series in Materials Science, vol. 166, Spinger, 2013

[8] Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Prog. Mater. Sci., Volume 94 (2018), pp. 114-173

[9] Mu, D.; Shu, H.; Zhao, L.; An, S. A review of research on seismic metamaterials, Adv. Eng. Mater., Volume 22 (2020) no. 4, 1901148

[10] Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y. Y.; Yang, Z.; Chan, C. T.; Sheng, P. Locally resonant sonic materials, Science, Volume 289 (2000) no. 5485, pp. 1734-1736

[11] Fang, N.; Xi, D.; Xu, J.; Ambati, M.; Srituravanich, W.; Sun, C.; Zhang, X. Ultrasonic metamaterials with negative modulus, Nat. Mater., Volume 5 (2006) no. 6, pp. 452-456

[12] Acoustic Metamaterials and Phononic Crystals (Deymier, P., ed.), Springer-Verlag, Berlin, Heidelberg, 2013

[13] Ma, G.; Sheng, P. Acoustic metamaterials: From local resonances to broad horizons, Sci. Adv., Volume 2 (2016) no. 2, e1501595

[14] Yang, M.; Sheng, P. Sound absorption structures: From porous media to acoustic metamaterials, Annu. Rev. Mater. Res., Volume 47 (2017), pp. 83-114

[15] Bobrovnitskii, Y. I.; Tomilina, T. Sound absorption and metamaterials: A review, Acoust. Phys., Volume 64 (2018) no. 5, pp. 519-526

[16] Lagarrigue, C.; Groby, J.-P.; Tournat, V.; Dazel, O.; Umnova, O. Absorption of sound by porous layers with embedded periodic array of resonant inclusions, J. Acoust. Soc. Am., Volume 134 (2013), pp. 4670-4680

[17] Groby, J.-P.; Nennig, B.; Lagarrigue, C.; Brouard, B.; Dazel, O.; Tournat, V. Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators, J. Acoust. Soc. Am., Volume 137 (2015) no. 1, pp. 273-280

[18] Lagarrigue, C.; Groby, J.-P.; Dazel, O.; Tournat, V. Design of metaporous supercells by genetic algorithm for absorption optimization on a wide frequency band, Appl. Acoust., Volume 102 (2016), pp. 49-54

[19] Cai, X.; Guo, Q.; Hu, G.; Yang, J. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators, Appl. Phys. Lett., Volume 105 (2014) no. 12, 121901

[20] Li, Y.; Assouar, B. M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Appl. Phys. Lett., Volume 108 (2016) no. 6, 063502

[21] Wang, Y.; Zhao, H.; Yang, H.; Zhong, J.; Wen, J. A space-coiled acoustic metamaterial with tunable low-frequency sound absorption, Europhys. Lett., Volume 120 (2018) no. 5, 54001

[22] Shen, C.; Cummer, S. A. Harnessing multiple internal reflections to design highly absorptive acoustic metasurfaces, Phys. Rev. Appl., Volume 9 (2018) no. 5, 054009

[23] Yang, Z.; Mei, J.; Yang, M.; Chan, N.; Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass, Phys. Rev. Lett., Volume 101 (2008) no. 20, 204301

[24] Guo, X.; Gusev, V.; Bertoldi, K.; Tournat, V. Manipulating acoustic wave reflexion by a nonlinear elastic metasurface, J. Appl. Phys., Volume 123 (2018) no. 12, 124901

[25] Guo, X.; Gusev, V.; Tournat, V.; Deng, B.; Bertoldi, K. Frequency-doubling effect in acoustic reflection by a nonlinear, architected rotating-square metasurface, Phys. Rev. E, Volume 99 (2019), 052209

[26] Bradley, C. E. Acoustic bloch wave propagation in a periodic waveguide Tech. rep., Technical Report of Applied Research Laboratories, Report No. ARL-TR-91-19 (July), The University of Texas at Austin (1991)

[27] Sugimoto, N.; Horioka, T. Dispersion characteristics of sound waves in a tunnel with an array of Helmholtz resonators, J. Acoust. Soc. Am., Volume 97 (1995) no. 3, pp. 1446-1459

[28] Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators, Sci. Rep., Volume 6 (2016), 19519

[29] Ma, G.; Yang, M.; Xiao, S.; Yang, Z.; Sheng, P. Acoustic metasurface with hybrid resonances, Nat. Mater., Volume 13 (2014) no. 9, pp. 873-878

[30] Yang, M.; Meng, C.; Fu, C.; Li, Y.; Yang, Z.; Sheng, P. Subwavelength total acoustic absorption with degenerate resonators, Appl. Phys. Lett., Volume 107 (2015) no. 10, 104104

[31] Aurégan, Y. Ultra-thin low frequency perfect sound absorber with high ratio of active area, Appl. Phys. Lett., Volume 113 (2018), 201904

[32] Groby, J.-P.; Huang, W.; Lardeau, A.; Aurégan, Y. The use of slow waves to design simple sound absorbing materials, J. Appl. Phys., Volume 117 (2015) no. 12, 124903

[33] Leroy, V.; Strybulevych, A.; Lanoy, M.; Lemoult, F.; Tourin, A.; Page, J. H. Superabsorption of acoustic waves with bubble metascreens, Phys. Rev. B, Volume 91 (2015), 020301

[34] Fernández-Marín, A. A.; Jiménez, N.; Groby, J.-P.; Sánchez-Dehesa, J.; Romero-García, V. Aerogel-based metasurfaces for perfect acoustic energy absorption, Appl. Phys. Lett., Volume 115 (2019), 061901

[35] Long, H.; Cheng, Y.; Tao, J.; Liu, X. Perfect absorption of low-frequency sound waves by critically coupled subwavelength resonant system, Appl. Phys. Lett., Volume 110 (2017) no. 2, 023502

[36] Romero-García, V.; Theocharis, G.; Richoux, O.; Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers, J. Acoust. Soc. Am., Volume 139 (2016) no. 6, pp. 3395-3403

[37] Jiménez, N.; Huang, W.; Romero-García, V.; Pagneux, V.; Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption, Appl. Phys. Lett., Volume 109 (2016) no. 12, 121902

[38] Jiménez, N.; Romero-García, V.; Pagneux, V.; Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound, Phys. Rev. B, Volume 95 (2017), 014205

[39] Jiménez, N.; Romero-García, V.; Pagneux, V.; Groby, J.-P. Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems, Sci. Rep., Volume 7 (2017) no. 1, 13595

[40] Jiménez, N.; Cox, T. J.; Romero-García, V.; Groby, J.-P. Metadiffusers: Deep-subwavelength sound diffusers, Sci. Rep., Volume 7 (2017) no. 1, 5389

[41] Jiménez, N.; Romero-García, V.; Groby, J.-P. Perfect absorption of sound by rigidly-backed high-porous materials, Acta Acust. United Acust., Volume 104 (2018) no. 3, pp. 396-409

[42] Merkel, A.; Theocharis, G.; Richoux, O.; Romero-García, V.; Pagneux, V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers, Appl. Phys. Lett., Volume 107 (2015) no. 24, 244102

[43] Achilleos, V.; Richoux, O.; Theocharis, G. Coherent perfect absorption induced by the nonlinearity of a Helmholtz resonator, J. Acoust. Soc. Am., Volume 140 (2016), EL94

[44] Long, H.; Cheng, Y.; Liu, X. Asymmetric absorber with multiband and broadband for low-frequency sound, Appl. Phys. Lett., Volume 111 (2017) no. 14, 143502

[45] Merkel, A.; Romero-García, V.; Groby, J.-P.; Li, J.; Christensen, J. Unidirectional zero sonic reflection in passive pt-symmetric willis media, Phys. Rev. B, Volume 98 (2018), 201102(R)

[46] Monsalve, E.; Maurel, A.; Petitjeans, P.; Pagneux, V. Perfect absorption of water waves by linearor nonlinear critical coupling, Appl. Phys. Lett., Volume 114 (2018), 013901

[47] Schwan, L.; Umnova, O.; Boutin, C. Sound absorption and reflection from a resonant metasurface: Homogenisation model with experimental validation, Wave Motion, Volume 72 (2017), pp. 154-172

[48] Huang, S.; Fang, X.; Wang, X.; Assouar, B.; Cheng, Q.; Li, Y. Acoustic perfect absorbers via spiral metasurfaces with embedded apertures, Appl. Phys. Lett., Volume 113 (2018) no. 23, 233501

[49] Elayouch, A.; Addouche, M.; Khelif, A. Extensive tailorability of sound absorption using acoustic metamaterials, J. Appl. Phys., Volume 124 (2018) no. 15, 155103

[50] Maurel, A.; Mercier, J.-F.; Pham, K.; Marigo, J.-J.; Ourir, A. Enhanced resonance of sparse arrays of Helmholtz resonators—application to perfect absorption, J. Acoust. Soc. Am., Volume 145 (2019) no. 4, pp. 2552-2560

[51] Romero-García, V.; Jiménez, N.; Groby, J.-P.; Merkel, A.; Tournat, V.; Theocharis, G.; Richoux, O.; Pagneux, V. Perfect absorption in mirror-symmetric acoustic metascreens, Phys. Rev. Appl. (2020), 054055

[52] Bliokh, K. Y.; Bliokh, Y. P.; Freilikher, V.; Savel’ev, S.; Nori, F. Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media, Rev. Mod. Phys., Volume 80 (2008) no. 4, pp. 1201-1213

[53] Richoux, O.; Achilleos, V.; Theocharis, G.; Brouzos, I. Subwavelength interferometric control of absorption in three-port acoustic network, Sci. Rep., Volume 8 (2018) no. 1, 12328

[54] Piper, J. R.; Liu, V.; Fan, S. Total absorption by degenrate critical coupling, Appl. Phys. Lett., Volume 104 (2014), 251110

[55] Chong, Y.; Ge, L.; Cao, H.; Stone, A. Coherent perfect absorbers: Time-reversed lasers, Phys. Rev. Lett., Volume 105 (2010), 053901

[56] Wei, P.; Croënne, C.; Chu, S. T.; Li, J. Symmetrical and anti-symmetrical coherent prefect absorption for acoustic waves, Appl. Phys. Lett., Volume 104 (2014), 121902

[57] Groby, J.-P.; Pommier, R.; Aurégan, Y. Use of slow sound to design perfect and broadband passive sound absorbing materials, J. Acoust. Soc. Am., Volume 139 (2016) no. 4, pp. 1660-1671

[58] Luk, T.; Campione, S.; Kim, I.; Feng, S.; Jun, Y.; Liu, S.; Wright, J.; Brener, I.; Catrysse, P.; Fan, S.; Sinclair, M. Directional perfect absorption using deep subwavelength lowpermittivity films, Phys. Rev. B, Volume 90 (2014), 085411

[59] Pagneux, V. Trapped modes and edge resonances in acoustics and elasticity, Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism (CISM International Centre for Mechanical Sciences, vol. 547), Springer, Vienna, 2013, pp. 181-223

[60] Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape, J. Acoust. Soc. Am., Volume 89 (1991) no. 2, pp. 550-558

[61] Theocharis, G.; Richoux, O.; Romero-Garcìa, V.; Merkel, A.; Tournat, V. Limits of slow sound and transparency in lossy locally resonant periodic structures, New J. Phys., Volume 16 (2014), 093017

[62] Kergomard, J.; Garcia, A. Simple discontinuities in acoustic waveguides at low frequencies: critical analysis and formulae, J. Sound Vib., Volume 114 (1987) no. 3, pp. 465-479

[63] Dubos, V.; Kergomard, J.; Khettabi, A.; Dalmont, J.-P.; Keefe, D.; Nederveen, C. Theory of sound propagation in a duct with a branched tube using modal decomposition, Acta Acust. United Acust., Volume 85 (1999) no. 2, pp. 153-169

[64] Mechel, F. P. Formulas of Acoustics, Springer Science & Business Media, Springer-Verlag, Heidelberg, 2008

[65] Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Ligth, Cambridge University Press, UK, 1999

[66] Zwikker, C.; Kosten, C. Sound Absorbing Materials, Elsevier Publishing Company, Amsterdam, 1949

[67] Xu, Q.; Sandhu, S.; Povinelli, M. L.; Shakya, J.; Fan, S.; Lipson, M. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency, Phys. Rev. Lett., Volume 96 (2006), 123901

[68] Yang, X.; Yu, M.; Kwong, D.-L.; Wong, C. W. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities, Phys. Rev. Lett., Volume 102 (2009), 173902

[69] Boudouti, E. H. E.; Mrabti, T.; Al-Wahsh, H.; Djafari-Rouhani, B.; Akjouj, A.; Dobrzynski, L. Transmission gaps and Fano resonances in an acoustic waveguide: analytical model, J. Phys.: Condens. Matter, Volume 20 (2008), 255212

[70] Santillan, A.; Bozhevolnyi, S. I. Acoustic transparency and slow sound using detuned acoustic resonators, Phys. Rev. B, Volume 84 (2011), 064394

[71] Mouadili, A.; Boudouti, E. H. E.; Soltani, A.; Talbi, A.; Djafari-Rouhani, B.; Akjouj, A.; Haddadi, K. Electromagnetically induced absorption in detuned stub waveguides: a simple analytical and experimental model, J. Phys.: Condens. Matter, Volume 26 (2014), 505901

[72] Xu, Y.; Li, Y.; Lee, R. K.; Yariv, A. Scattering-theory analysis of waveguide–resonator coupling, Phys. Rev. E, Volume 62 (2000), pp. 7389-7404

[73] Powell, M. J. A fast algorithm for nonlinearly constrained optimization calculations, Numerical Analysis, Springer, 1978, pp. 144-157

[74] Cox, T. J.; D’Antonio, P. Acoustic Absorbers and Diffusers: Theory, Design and Application, CRC Press, 2016

[75] Groby, J.-P.; Ogam, E.; De Ryck, L.; Sebaa, N.; Lauriks, W. Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reflected coefficients, J. Acoust. Soc. Am., Volume 127 (2010) no. 2, pp. 764-772

[76] Tsakmakidis, K. L.; Boardman, A. D.; Hess, O. Trapped rainbow storage of light in metamaterials, Nature, Volume 450 (2007) no. 7168, pp. 397-401

[77] Zhu, J.; Chen, Y.; Zhu, X.; Garcia-Vidal, F. J.; Yin, X.; Zhang, W.; Zhang, X. Acoustic rainbow trapping, Sci. Rep., Volume 3 (2013), 1728

[78] Romero-Garcia, V.; Picó, R.; Cebrecos, A.; Sanchez-Morcillo, V.; Staliunas, K. Enhancement of sound in chirped sonic crystals, Appl. Phys. Lett., Volume 102 (2013) no. 9, 091906

[79] Ni, X.; Wu, Y.; Chen, Z.-G.; Zheng, L.-Y.; Xu, Y.-L.; Nayar, P.; Liu, X.-P.; Lu, M.-H.; Chen, Y.-F. Acoustic rainbow trapping by coiling up space, Sci. Rep., Volume 4 (2014), 7038

[80] Colombi, A.; Colquitt, D.; Roux, P.; Guenneau, S.; Craster, R. V. A seismic metamaterial: The resonant metawedge, Sci. Rep., Volume 6 (2016), 27717

[81] Jan, A. U.; Porter, R. Transmission and absorption in a waveguide with a metamaterial cavity, J. Acoust. Soc. Am., Volume 144 (2018) no. 6, pp. 3172-3180




This item appears in the following Collection(s)

Show full item record