- -

Design of acoustic metamaterials made of Helmholtz resonators for perfect absorption by using the complex frequency plane

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design of acoustic metamaterials made of Helmholtz resonators for perfect absorption by using the complex frequency plane

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero-García, V. es_ES
dc.contributor.author Jimenez, Noe es_ES
dc.contributor.author Theocharis, G. es_ES
dc.contributor.author Achilleos, V. es_ES
dc.contributor.author Merkel, A. es_ES
dc.contributor.author Richoux, O. es_ES
dc.contributor.author Tournat, V. es_ES
dc.contributor.author Groby, J-P es_ES
dc.contributor.author Pagneux, V. es_ES
dc.date.accessioned 2021-02-10T04:31:40Z
dc.date.available 2021-02-10T04:31:40Z
dc.date.issued 2020 es_ES
dc.identifier.issn 1631-0705 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160985
dc.description.abstract [Otros] Dans cette revue, nous présentons des résultats sur l'absorption acoustique parfaite sub-longueur d'onde faisant appel à des métamatériaux acoustiques avec des résonateurs Helmholtz pour différentes configurations. L'absorption parfaite à basse fréquence nécessite une augmentation du nombre d'états aux basses fréquences ainsi que de trouver les bonnes conditions pour une adaptation d'impédance avec le milieu environnant. Si en outre, on souhaite réduire les dimensions géométriques des structures proposées pour des questions pratiques, on peut utiliser des résonateurs locaux judicieusement conçus afin d'attendre une absorption parfaite sub-longueur d'onde. Les résonateurs de Helmholtz se sont révélés de bons candidats en raison de leur accordabilité aisée de la géométrie, donc de la fréquence de résonance, de la fuite d'énergie et des pertes intrinsèques. Lorsqu'ils sont branchés à un guide d'ondes ou à un milieu environnant, ils se comportent comme des systèmes ouverts, avec pertes et résonances caractérisés par leur fuite d'énergie et leurs pertes intrinsèques. L'équilibre entre ces deux aspects représente la condition de couplage critique et donne lieu à un maximum d'absorption d'énergie. Le mécanisme de couplage critique est ici représenté dans le plan de fréquence complexe afin d'interpréter la condition d'adaptation d'impédance. Dans cette revue, nous discutons en détail la possibilité d'obtenir une absorption parfaite par ces conditions de couplage critiques dans différents systèmes tels que la réflexion (à un port), la transmission (à deux ports) ou les systèmes à trois ports. es_ES
dc.description.abstract [EN] In this review, we present the results on sub-wavelength perfect acoustic absorption using acoustic metamaterials made of Helmholtz resonators with different setups. Low frequency perfect absorption requires to increase the number of states at low frequencies and finding the good conditions for impedance matching with the background medium. If, in addition, one wishes to reduce the geometric dimensions of the proposed structures for practical issues, one can use properly designed local resonators and achieve subwavelength perfect absorption. Helmholtz resonators have been shown good candidates due to their easy tunability of the geometry, so of the resonance frequency, the energy leakage and the intrinsic losses. When plugged to a waveguide or a surrounding medium they behave as open, lossy and resonant systems characterized by their energy leakage and intrinsic losses. The balance between these two represents the critical coupling condition and gives rise to maximum energy absorption. The critical coupling mechanism is represented here in the complex frequency plane in order to interpret the impedance matching condition. In this review we discuss in detail the possibility to obtain perfect absorption by these critical coupling conditions in different systems such as reflection (one-port), transmission (two-ports) or three-ports systems. es_ES
dc.description.sponsorship The authors gratefully acknowledge the ANR-RGC METARoom (ANR-18-CE08-0021) project and the project HYPERMETA funded under the program Étoiles Montantes of the Région Pays de la Loire. NJ acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (MICINN) through grant ¿Juan de la Cierva-Incorporación¿ (IJC2018-037897- I). This article is based upon work from COST Action DENORMS CA15125, supported by COST (European Cooperation in Science and Technology). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Comptes Rendus Physique es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Acoustic metamaterials es_ES
dc.subject Perfect absorption es_ES
dc.subject Helmholtz resonators es_ES
dc.subject Locally resonant materials es_ES
dc.subject Critical coupling es_ES
dc.subject Complex frequency plane es_ES
dc.subject Métamatériaux acoustiques es_ES
dc.subject Absorption parfaite es_ES
dc.subject Résonateurs de Helmholtz es_ES
dc.subject Résonateurs locaux es_ES
dc.subject Couplage critique es_ES
dc.subject Plan des fréquences complexes es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Design of acoustic metamaterials made of Helmholtz resonators for perfect absorption by using the complex frequency plane es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5802/crphys.32 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA15125/EU/Designs for Noise Reducing Materials and Structures (DENORMS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-18-CE08-0021/FR/METARoom: deep subwavelength reconfigurable acoustic treatments for room acoustics/METARoom/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//IJC2018-037897-I/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Romero-García, V.; Jimenez, N.; Theocharis, G.; Achilleos, V.; Merkel, A.; Richoux, O.; Tournat, V.... (2020). Design of acoustic metamaterials made of Helmholtz resonators for perfect absorption by using the complex frequency plane. Comptes Rendus Physique. 21(7-8):713-749. https://doi.org/10.5802/crphys.32 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.5802/crphys.32 es_ES
dc.description.upvformatpinicio 713 es_ES
dc.description.upvformatpfin 749 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 7-8 es_ES
dc.relation.pasarela S\426607 es_ES
dc.contributor.funder Region Pays de la Loire es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references [1] Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells, Nat. Mater., Volume 4 (2005) no. 6, pp. 455-459 es_ES
dc.description.references [2] Derode, A.; Roux, P.; Fink, M. Robust acoustic time reversal with high-order multiple scattering, Phys. Rev. Lett., Volume 75 (1995) no. 23, pp. 4206-4209 es_ES
dc.description.references [3] Chong, Y.; Ge, L.; Cao, H.; Stone, A. D. Coherent perfect absorbers: time-reversed lasers, Phys. Rev. Lett., Volume 105 (2010) no. 5, 053901 es_ES
dc.description.references [4] Mei, J.; Ma, G.; Yang, M.; Yang, Z.; Wen, W.; Sheng, P. Dark acoustic metamaterials as super absorbers for low-frequency sound, Nat. Commun., Volume 3 (2012), 756 es_ES
dc.description.references [5] Engheta, N.; Ziolkowski, R. W. Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, 2006 es_ES
dc.description.references [6] Romero-García, V.; Hladky-Hennion, A. Fundamentals and Applications of Acoustic Metamaterials: From Seismic to Radio Frequency, ISTE Willey, 2019 es_ES
dc.description.references [7] Craster, R.; Guenneau, S. Acoustic Metamaterials, Springer Series in Materials Science, vol. 166, Spinger, 2013 es_ES
dc.description.references [8] Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Prog. Mater. Sci., Volume 94 (2018), pp. 114-173 es_ES
dc.description.references [9] Mu, D.; Shu, H.; Zhao, L.; An, S. A review of research on seismic metamaterials, Adv. Eng. Mater., Volume 22 (2020) no. 4, 1901148 es_ES
dc.description.references [10] Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y. Y.; Yang, Z.; Chan, C. T.; Sheng, P. Locally resonant sonic materials, Science, Volume 289 (2000) no. 5485, pp. 1734-1736 es_ES
dc.description.references [11] Fang, N.; Xi, D.; Xu, J.; Ambati, M.; Srituravanich, W.; Sun, C.; Zhang, X. Ultrasonic metamaterials with negative modulus, Nat. Mater., Volume 5 (2006) no. 6, pp. 452-456 es_ES
dc.description.references [12] Acoustic Metamaterials and Phononic Crystals (Deymier, P., ed.), Springer-Verlag, Berlin, Heidelberg, 2013 es_ES
dc.description.references [13] Ma, G.; Sheng, P. Acoustic metamaterials: From local resonances to broad horizons, Sci. Adv., Volume 2 (2016) no. 2, e1501595 es_ES
dc.description.references [14] Yang, M.; Sheng, P. Sound absorption structures: From porous media to acoustic metamaterials, Annu. Rev. Mater. Res., Volume 47 (2017), pp. 83-114 es_ES
dc.description.references [15] Bobrovnitskii, Y. I.; Tomilina, T. Sound absorption and metamaterials: A review, Acoust. Phys., Volume 64 (2018) no. 5, pp. 519-526 es_ES
dc.description.references [16] Lagarrigue, C.; Groby, J.-P.; Tournat, V.; Dazel, O.; Umnova, O. Absorption of sound by porous layers with embedded periodic array of resonant inclusions, J. Acoust. Soc. Am., Volume 134 (2013), pp. 4670-4680 es_ES
dc.description.references [17] Groby, J.-P.; Nennig, B.; Lagarrigue, C.; Brouard, B.; Dazel, O.; Tournat, V. Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators, J. Acoust. Soc. Am., Volume 137 (2015) no. 1, pp. 273-280 es_ES
dc.description.references [18] Lagarrigue, C.; Groby, J.-P.; Dazel, O.; Tournat, V. Design of metaporous supercells by genetic algorithm for absorption optimization on a wide frequency band, Appl. Acoust., Volume 102 (2016), pp. 49-54 es_ES
dc.description.references [19] Cai, X.; Guo, Q.; Hu, G.; Yang, J. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators, Appl. Phys. Lett., Volume 105 (2014) no. 12, 121901 es_ES
dc.description.references [20] Li, Y.; Assouar, B. M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Appl. Phys. Lett., Volume 108 (2016) no. 6, 063502 es_ES
dc.description.references [21] Wang, Y.; Zhao, H.; Yang, H.; Zhong, J.; Wen, J. A space-coiled acoustic metamaterial with tunable low-frequency sound absorption, Europhys. Lett., Volume 120 (2018) no. 5, 54001 es_ES
dc.description.references [22] Shen, C.; Cummer, S. A. Harnessing multiple internal reflections to design highly absorptive acoustic metasurfaces, Phys. Rev. Appl., Volume 9 (2018) no. 5, 054009 es_ES
dc.description.references [23] Yang, Z.; Mei, J.; Yang, M.; Chan, N.; Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass, Phys. Rev. Lett., Volume 101 (2008) no. 20, 204301 es_ES
dc.description.references [24] Guo, X.; Gusev, V.; Bertoldi, K.; Tournat, V. Manipulating acoustic wave reflexion by a nonlinear elastic metasurface, J. Appl. Phys., Volume 123 (2018) no. 12, 124901 es_ES
dc.description.references [25] Guo, X.; Gusev, V.; Tournat, V.; Deng, B.; Bertoldi, K. Frequency-doubling effect in acoustic reflection by a nonlinear, architected rotating-square metasurface, Phys. Rev. E, Volume 99 (2019), 052209 es_ES
dc.description.references [26] Bradley, C. E. Acoustic bloch wave propagation in a periodic waveguide Tech. rep., Technical Report of Applied Research Laboratories, Report No. ARL-TR-91-19 (July), The University of Texas at Austin (1991) es_ES
dc.description.references [27] Sugimoto, N.; Horioka, T. Dispersion characteristics of sound waves in a tunnel with an array of Helmholtz resonators, J. Acoust. Soc. Am., Volume 97 (1995) no. 3, pp. 1446-1459 es_ES
dc.description.references [28] Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators, Sci. Rep., Volume 6 (2016), 19519 es_ES
dc.description.references [29] Ma, G.; Yang, M.; Xiao, S.; Yang, Z.; Sheng, P. Acoustic metasurface with hybrid resonances, Nat. Mater., Volume 13 (2014) no. 9, pp. 873-878 es_ES
dc.description.references [30] Yang, M.; Meng, C.; Fu, C.; Li, Y.; Yang, Z.; Sheng, P. Subwavelength total acoustic absorption with degenerate resonators, Appl. Phys. Lett., Volume 107 (2015) no. 10, 104104 es_ES
dc.description.references [31] Aurégan, Y. Ultra-thin low frequency perfect sound absorber with high ratio of active area, Appl. Phys. Lett., Volume 113 (2018), 201904 es_ES
dc.description.references [32] Groby, J.-P.; Huang, W.; Lardeau, A.; Aurégan, Y. The use of slow waves to design simple sound absorbing materials, J. Appl. Phys., Volume 117 (2015) no. 12, 124903 es_ES
dc.description.references [33] Leroy, V.; Strybulevych, A.; Lanoy, M.; Lemoult, F.; Tourin, A.; Page, J. H. Superabsorption of acoustic waves with bubble metascreens, Phys. Rev. B, Volume 91 (2015), 020301 es_ES
dc.description.references [34] Fernández-Marín, A. A.; Jiménez, N.; Groby, J.-P.; Sánchez-Dehesa, J.; Romero-García, V. Aerogel-based metasurfaces for perfect acoustic energy absorption, Appl. Phys. Lett., Volume 115 (2019), 061901 es_ES
dc.description.references [35] Long, H.; Cheng, Y.; Tao, J.; Liu, X. Perfect absorption of low-frequency sound waves by critically coupled subwavelength resonant system, Appl. Phys. Lett., Volume 110 (2017) no. 2, 023502 es_ES
dc.description.references [36] Romero-García, V.; Theocharis, G.; Richoux, O.; Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers, J. Acoust. Soc. Am., Volume 139 (2016) no. 6, pp. 3395-3403 es_ES
dc.description.references [37] Jiménez, N.; Huang, W.; Romero-García, V.; Pagneux, V.; Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption, Appl. Phys. Lett., Volume 109 (2016) no. 12, 121902 es_ES
dc.description.references [38] Jiménez, N.; Romero-García, V.; Pagneux, V.; Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound, Phys. Rev. B, Volume 95 (2017), 014205 es_ES
dc.description.references [39] Jiménez, N.; Romero-García, V.; Pagneux, V.; Groby, J.-P. Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems, Sci. Rep., Volume 7 (2017) no. 1, 13595 es_ES
dc.description.references [40] Jiménez, N.; Cox, T. J.; Romero-García, V.; Groby, J.-P. Metadiffusers: Deep-subwavelength sound diffusers, Sci. Rep., Volume 7 (2017) no. 1, 5389 es_ES
dc.description.references [41] Jiménez, N.; Romero-García, V.; Groby, J.-P. Perfect absorption of sound by rigidly-backed high-porous materials, Acta Acust. United Acust., Volume 104 (2018) no. 3, pp. 396-409 es_ES
dc.description.references [42] Merkel, A.; Theocharis, G.; Richoux, O.; Romero-García, V.; Pagneux, V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers, Appl. Phys. Lett., Volume 107 (2015) no. 24, 244102 es_ES
dc.description.references [43] Achilleos, V.; Richoux, O.; Theocharis, G. Coherent perfect absorption induced by the nonlinearity of a Helmholtz resonator, J. Acoust. Soc. Am., Volume 140 (2016), EL94 es_ES
dc.description.references [44] Long, H.; Cheng, Y.; Liu, X. Asymmetric absorber with multiband and broadband for low-frequency sound, Appl. Phys. Lett., Volume 111 (2017) no. 14, 143502 es_ES
dc.description.references [45] Merkel, A.; Romero-García, V.; Groby, J.-P.; Li, J.; Christensen, J. Unidirectional zero sonic reflection in passive pt-symmetric willis media, Phys. Rev. B, Volume 98 (2018), 201102(R) es_ES
dc.description.references [46] Monsalve, E.; Maurel, A.; Petitjeans, P.; Pagneux, V. Perfect absorption of water waves by linearor nonlinear critical coupling, Appl. Phys. Lett., Volume 114 (2018), 013901 es_ES
dc.description.references [47] Schwan, L.; Umnova, O.; Boutin, C. Sound absorption and reflection from a resonant metasurface: Homogenisation model with experimental validation, Wave Motion, Volume 72 (2017), pp. 154-172 es_ES
dc.description.references [48] Huang, S.; Fang, X.; Wang, X.; Assouar, B.; Cheng, Q.; Li, Y. Acoustic perfect absorbers via spiral metasurfaces with embedded apertures, Appl. Phys. Lett., Volume 113 (2018) no. 23, 233501 es_ES
dc.description.references [49] Elayouch, A.; Addouche, M.; Khelif, A. Extensive tailorability of sound absorption using acoustic metamaterials, J. Appl. Phys., Volume 124 (2018) no. 15, 155103 es_ES
dc.description.references [50] Maurel, A.; Mercier, J.-F.; Pham, K.; Marigo, J.-J.; Ourir, A. Enhanced resonance of sparse arrays of Helmholtz resonators—application to perfect absorption, J. Acoust. Soc. Am., Volume 145 (2019) no. 4, pp. 2552-2560 es_ES
dc.description.references [51] Romero-García, V.; Jiménez, N.; Groby, J.-P.; Merkel, A.; Tournat, V.; Theocharis, G.; Richoux, O.; Pagneux, V. Perfect absorption in mirror-symmetric acoustic metascreens, Phys. Rev. Appl. (2020), 054055 es_ES
dc.description.references [52] Bliokh, K. Y.; Bliokh, Y. P.; Freilikher, V.; Savel’ev, S.; Nori, F. Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media, Rev. Mod. Phys., Volume 80 (2008) no. 4, pp. 1201-1213 es_ES
dc.description.references [53] Richoux, O.; Achilleos, V.; Theocharis, G.; Brouzos, I. Subwavelength interferometric control of absorption in three-port acoustic network, Sci. Rep., Volume 8 (2018) no. 1, 12328 es_ES
dc.description.references [54] Piper, J. R.; Liu, V.; Fan, S. Total absorption by degenrate critical coupling, Appl. Phys. Lett., Volume 104 (2014), 251110 es_ES
dc.description.references [55] Chong, Y.; Ge, L.; Cao, H.; Stone, A. Coherent perfect absorbers: Time-reversed lasers, Phys. Rev. Lett., Volume 105 (2010), 053901 es_ES
dc.description.references [56] Wei, P.; Croënne, C.; Chu, S. T.; Li, J. Symmetrical and anti-symmetrical coherent prefect absorption for acoustic waves, Appl. Phys. Lett., Volume 104 (2014), 121902 es_ES
dc.description.references [57] Groby, J.-P.; Pommier, R.; Aurégan, Y. Use of slow sound to design perfect and broadband passive sound absorbing materials, J. Acoust. Soc. Am., Volume 139 (2016) no. 4, pp. 1660-1671 es_ES
dc.description.references [58] Luk, T.; Campione, S.; Kim, I.; Feng, S.; Jun, Y.; Liu, S.; Wright, J.; Brener, I.; Catrysse, P.; Fan, S.; Sinclair, M. Directional perfect absorption using deep subwavelength lowpermittivity films, Phys. Rev. B, Volume 90 (2014), 085411 es_ES
dc.description.references [59] Pagneux, V. Trapped modes and edge resonances in acoustics and elasticity, Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism (CISM International Centre for Mechanical Sciences, vol. 547), Springer, Vienna, 2013, pp. 181-223 es_ES
dc.description.references [60] Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape, J. Acoust. Soc. Am., Volume 89 (1991) no. 2, pp. 550-558 es_ES
dc.description.references [61] Theocharis, G.; Richoux, O.; Romero-Garcìa, V.; Merkel, A.; Tournat, V. Limits of slow sound and transparency in lossy locally resonant periodic structures, New J. Phys., Volume 16 (2014), 093017 es_ES
dc.description.references [62] Kergomard, J.; Garcia, A. Simple discontinuities in acoustic waveguides at low frequencies: critical analysis and formulae, J. Sound Vib., Volume 114 (1987) no. 3, pp. 465-479 es_ES
dc.description.references [63] Dubos, V.; Kergomard, J.; Khettabi, A.; Dalmont, J.-P.; Keefe, D.; Nederveen, C. Theory of sound propagation in a duct with a branched tube using modal decomposition, Acta Acust. United Acust., Volume 85 (1999) no. 2, pp. 153-169 es_ES
dc.description.references [64] Mechel, F. P. Formulas of Acoustics, Springer Science & Business Media, Springer-Verlag, Heidelberg, 2008 es_ES
dc.description.references [65] Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Ligth, Cambridge University Press, UK, 1999 es_ES
dc.description.references [66] Zwikker, C.; Kosten, C. Sound Absorbing Materials, Elsevier Publishing Company, Amsterdam, 1949 es_ES
dc.description.references [67] Xu, Q.; Sandhu, S.; Povinelli, M. L.; Shakya, J.; Fan, S.; Lipson, M. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency, Phys. Rev. Lett., Volume 96 (2006), 123901 es_ES
dc.description.references [68] Yang, X.; Yu, M.; Kwong, D.-L.; Wong, C. W. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities, Phys. Rev. Lett., Volume 102 (2009), 173902 es_ES
dc.description.references [69] Boudouti, E. H. E.; Mrabti, T.; Al-Wahsh, H.; Djafari-Rouhani, B.; Akjouj, A.; Dobrzynski, L. Transmission gaps and Fano resonances in an acoustic waveguide: analytical model, J. Phys.: Condens. Matter, Volume 20 (2008), 255212 es_ES
dc.description.references [70] Santillan, A.; Bozhevolnyi, S. I. Acoustic transparency and slow sound using detuned acoustic resonators, Phys. Rev. B, Volume 84 (2011), 064394 es_ES
dc.description.references [71] Mouadili, A.; Boudouti, E. H. E.; Soltani, A.; Talbi, A.; Djafari-Rouhani, B.; Akjouj, A.; Haddadi, K. Electromagnetically induced absorption in detuned stub waveguides: a simple analytical and experimental model, J. Phys.: Condens. Matter, Volume 26 (2014), 505901 es_ES
dc.description.references [72] Xu, Y.; Li, Y.; Lee, R. K.; Yariv, A. Scattering-theory analysis of waveguide–resonator coupling, Phys. Rev. E, Volume 62 (2000), pp. 7389-7404 es_ES
dc.description.references [73] Powell, M. J. A fast algorithm for nonlinearly constrained optimization calculations, Numerical Analysis, Springer, 1978, pp. 144-157 es_ES
dc.description.references [74] Cox, T. J.; D’Antonio, P. Acoustic Absorbers and Diffusers: Theory, Design and Application, CRC Press, 2016 es_ES
dc.description.references [75] Groby, J.-P.; Ogam, E.; De Ryck, L.; Sebaa, N.; Lauriks, W. Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reflected coefficients, J. Acoust. Soc. Am., Volume 127 (2010) no. 2, pp. 764-772 es_ES
dc.description.references [76] Tsakmakidis, K. L.; Boardman, A. D.; Hess, O. Trapped rainbow storage of light in metamaterials, Nature, Volume 450 (2007) no. 7168, pp. 397-401 es_ES
dc.description.references [77] Zhu, J.; Chen, Y.; Zhu, X.; Garcia-Vidal, F. J.; Yin, X.; Zhang, W.; Zhang, X. Acoustic rainbow trapping, Sci. Rep., Volume 3 (2013), 1728 es_ES
dc.description.references [78] Romero-Garcia, V.; Picó, R.; Cebrecos, A.; Sanchez-Morcillo, V.; Staliunas, K. Enhancement of sound in chirped sonic crystals, Appl. Phys. Lett., Volume 102 (2013) no. 9, 091906 es_ES
dc.description.references [79] Ni, X.; Wu, Y.; Chen, Z.-G.; Zheng, L.-Y.; Xu, Y.-L.; Nayar, P.; Liu, X.-P.; Lu, M.-H.; Chen, Y.-F. Acoustic rainbow trapping by coiling up space, Sci. Rep., Volume 4 (2014), 7038 es_ES
dc.description.references [80] Colombi, A.; Colquitt, D.; Roux, P.; Guenneau, S.; Craster, R. V. A seismic metamaterial: The resonant metawedge, Sci. Rep., Volume 6 (2016), 27717 es_ES
dc.description.references [81] Jan, A. U.; Porter, R. Transmission and absorption in a waveguide with a metamaterial cavity, J. Acoust. Soc. Am., Volume 144 (2018) no. 6, pp. 3172-3180 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem