- -

Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates

Mostrar el registro completo del ítem

Robles Martínez, Á.; Durán, F.; Giménez, JB.; Jiménez, E.; Ribes, J.; Serralta Sevilla, J.; Seco, A.... (2020). Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates. Bioresource Technology. 314:1-12. https://doi.org/10.1016/j.biortech.2020.123763

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160986

Ficheros en el ítem

Metadatos del ítem

Título: Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates
Autor: Robles Martínez, Ángel Durán, Freddy Giménez, Juan Bautista Jiménez, Emérita Ribes, Josep Serralta Sevilla, Joaquín Seco, Aurora FERRER, J. Rogalla, Frank
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Feasibility of an AnMBR demonstration plant treating urban wastewater (UWW) at temperatures around 25-30 degrees C was assessed during a 350-day experimental period. The plant was fed with the effluent from the ...[+]
Palabras clave: Anaerobic membrane bioreactor (AnMBR) , Industrial-scale membrane , Demonstration plant , Methane production , Urban wastewater (UWW) , Mild/warmer climate
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Bioresource Technology. (issn: 0960-8524 )
DOI: 10.1016/j.biortech.2020.123763
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.biortech.2020.123763
Código del Proyecto:
info:eu-repo/grantAgreement/EC//LIFE13 ENV%2FES%2F001353/EU/Membrane for ENERGY and WATER RECOVERY/LIFE MEMORY/
Agradecimientos:
The authors are grateful to the European Commission for the cofinancing of the LIFE MEMORY project (LIFE13 ENV/ES/001353) and the staff of Aguas de Alcazar for their collaboration.
Tipo: Artículo

References

Aslam, M., McCarty, P. L., Shin, C., Bae, J., & Kim, J. (2017). Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment. Bioresource Technology, 240, 33-41. doi:10.1016/j.biortech.2017.03.017

Batstone, D. J., & Virdis, B. (2014). The role of anaerobic digestion in the emerging energy economy. Current Opinion in Biotechnology, 27, 142-149. doi:10.1016/j.copbio.2014.01.013

Becker, A. M., Yu, K., Stadler, L. B., & Smith, A. L. (2017). Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies. Bioresource Technology, 223, 131-140. doi:10.1016/j.biortech.2016.10.031 [+]
Aslam, M., McCarty, P. L., Shin, C., Bae, J., & Kim, J. (2017). Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment. Bioresource Technology, 240, 33-41. doi:10.1016/j.biortech.2017.03.017

Batstone, D. J., & Virdis, B. (2014). The role of anaerobic digestion in the emerging energy economy. Current Opinion in Biotechnology, 27, 142-149. doi:10.1016/j.copbio.2014.01.013

Becker, A. M., Yu, K., Stadler, L. B., & Smith, A. L. (2017). Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies. Bioresource Technology, 223, 131-140. doi:10.1016/j.biortech.2016.10.031

Dereli, R. K., Ersahin, M. E., Ozgun, H., Ozturk, I., Jeison, D., van der Zee, F., & van Lier, J. B. (2012). Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresource Technology, 122, 160-170. doi:10.1016/j.biortech.2012.05.139

EEA, 2018. Water use and environmental pressures [WWW Document].

Eggleston H.S., Buendia L., Miwa K., N.T., T.K., 2006. IPCC Guidelines for National Greenhouse Gas Inventories.

European Commission, 2017. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: on the 2017 list of Critical Raw Materials for the EU, Official Journal of the European Union. Brussels (Belgium).

Fedorovich, V., Lens, P., & Kalyuzhnyi, S. (2003). Extension of Anaerobic Digestion Model No. 1 with Processes of Sulfate Reduction. Applied Biochemistry and Biotechnology, 109(1-3), 33-46. doi:10.1385/abab:109:1-3:33

Foladori, P., Andreottola, G., Ziglio, G., 2010. Sludge Reduction Technologies in Wastewater Treatment Plants. https://doi.org/10.2166/9781780401706.

Galib, M., Elbeshbishy, E., Reid, R., Hussain, A., & Lee, H.-S. (2016). Energy-positive food wastewater treatment using an anaerobic membrane bioreactor (AnMBR). Journal of Environmental Management, 182, 477-485. doi:10.1016/j.jenvman.2016.07.098

Giménez, J. B., Martí, N., Ferrer, J., & Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 118, 67-72. doi:10.1016/j.biortech.2012.05.019

Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014

Gouveia, J., Plaza, F., Garralon, G., Fdz-Polanco, F., & Peña, M. (2015). Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions. Bioresource Technology, 185, 225-233. doi:10.1016/j.biortech.2015.03.002

Günther, S., Grunert, M., & Müller, S. (2018). Overview of recent advances in phosphorus recovery for fertilizer production. Engineering in Life Sciences, 18(7), 434-439. doi:10.1002/elsc.201700171

Jiménez-Benítez, A., Ferrer, J., Rogalla, F., Vázquez, J.R., Seco, A., Robles, Á., 2020. 12 – Energy and environmental impact of an anaerobic membrane bioreactor (AnMBR) demonstration plant treating urban wastewater. In: Mannina, G., Pandey, A., Larroche, C., Ng, H.Y., Ngo, H.H.B.T.-C.D. (Eds.), Elsevier, pp. 289–310. https://doi.org/https://doi.org/10.1016/B978-0-12-819854-4.00012-5.

Kamali, M., & Khodaparast, Z. (2015). Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicology and Environmental Safety, 114, 326-342. doi:10.1016/j.ecoenv.2014.05.005

Kim, J., Kim, K., Ye, H., Lee, E., Shin, C., McCarty, P. L., & Bae, J. (2010). Anaerobic Fluidized Bed Membrane Bioreactor for Wastewater Treatment. Environmental Science & Technology, 45(2), 576-581. doi:10.1021/es1027103

Lee, M., Keller, A. A., Chiang, P.-C., Den, W., Wang, H., Hou, C.-H., … Yan, J. (2017). Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Applied Energy, 205, 589-601. doi:10.1016/j.apenergy.2017.08.002

Lens, P. N. L., Visser, A., Janssen, A. J. H., Pol, L. W. H., & Lettinga, G. (1998). Biotechnological Treatment of Sulfate-Rich Wastewaters. Critical Reviews in Environmental Science and Technology, 28(1), 41-88. doi:10.1080/10643389891254160

Lew, B., Lustig, I., Beliavski, M., Tarre, S., & Green, M. (2011). An integrated UASB-sludge digester system for raw domestic wastewater treatment in temperate climates. Bioresource Technology, 102(7), 4921-4924. doi:10.1016/j.biortech.2011.01.030

Li, X., & Wang, X. (2006). Modelling of membrane fouling in a submerged membrane bioreactor. Journal of Membrane Science, 278(1-2), 151-161. doi:10.1016/j.memsci.2005.10.051

Maree, J. P., & Strydom, W. F. (1985). Biological sulphate removal in an upflow packed bed reactor. Water Research, 19(9), 1101-1106. doi:10.1016/0043-1354(85)90346-x

Martin Garcia, I., Mokosch, M., Soares, A., Pidou, M., & Jefferson, B. (2013). Impact on reactor configuration on the performance of anaerobic MBRs: Treatment of settled sewage in temperate climates. Water Research, 47(14), 4853-4860. doi:10.1016/j.watres.2013.05.008

Martin, I., Pidou, M., Soares, A., Judd, S., & Jefferson, B. (2011). Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment. Environmental Technology, 32(9), 921-932. doi:10.1080/09593330.2011.565806

Martinez-Sosa, D., Helmreich, B., Netter, T., Paris, S., Bischof, F., & Horn, H. (2011). Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions. Bioresource Technology, 102(22), 10377-10385. doi:10.1016/j.biortech.2011.09.012

McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic Wastewater Treatment as a Net Energy Producer–Can This be Achieved? Environmental Science & Technology, 45(17), 7100-7106. doi:10.1021/es2014264

Moosbrugger, R.E., Wentzel, M.C., Ekama, G.A., Marais, G., 1992. Simple titration procedures to determine H2CO3* alkalinity and short-chain fatty acids in aqueous solutions. Pretoria.

Ozgun, H., Dereli, R. K., Ersahin, M. E., Kinaci, C., Spanjers, H., & van Lier, J. B. (2013). A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Separation and Purification Technology, 118, 89-104. doi:10.1016/j.seppur.2013.06.036

Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049

Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2013). Factors that affect the permeability of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Water Research, 47(3), 1277-1288. doi:10.1016/j.watres.2012.11.055

Sanchis-Perucho, P., Robles, Á., Durán, F., Ferrer, J., & Seco, A. (2020). PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents. Journal of Membrane Science, 604, 118070. doi:10.1016/j.memsci.2020.118070

Seco, A., Mateo, O., Zamorano-López, N., Sanchis-Perucho, P., Serralta, J., Martí, N., … Ferrer, J. (2018). Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology. Environmental Science: Water Research & Technology, 4(11), 1877-1887. doi:10.1039/c8ew00313k

Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492

Shin, C., & Bae, J. (2018). Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: A critical review. Bioresource Technology, 247, 1038-1046. doi:10.1016/j.biortech.2017.09.002

Shin, C., McCarty, P. L., Kim, J., & Bae, J. (2014). Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR). Bioresource Technology, 159, 95-103. doi:10.1016/j.biortech.2014.02.060

Smith, A. L., Stadler, L. B., Love, N. G., Skerlos, S. J., & Raskin, L. (2012). Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review. Bioresource Technology, 122, 149-159. doi:10.1016/j.biortech.2012.04.055

Song, X., Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., & Nghiem, L. D. (2018). Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges. Bioresource Technology, 270, 669-677. doi:10.1016/j.biortech.2018.09.001

Stazi, V., & Tomei, M. C. (2018). Enhancing anaerobic treatment of domestic wastewater: State of the art, innovative technologies and future perspectives. Science of The Total Environment, 635, 78-91. doi:10.1016/j.scitotenv.2018.04.071

Wang, K. M., Jefferson, B., Soares, A., & McAdam, E. J. (2018). Sustaining membrane permeability during unsteady-state operation of anaerobic membrane bioreactors for municipal wastewater treatment following peak-flow. Journal of Membrane Science, 564, 289-297. doi:10.1016/j.memsci.2018.07.032

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem