- -

Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Robles Martínez, Ángel es_ES
dc.contributor.author Durán, Freddy es_ES
dc.contributor.author Giménez, Juan Bautista es_ES
dc.contributor.author Jiménez, Emérita es_ES
dc.contributor.author Ribes, Josep es_ES
dc.contributor.author Serralta Sevilla, Joaquín es_ES
dc.contributor.author Seco, Aurora es_ES
dc.contributor.author FERRER, J. es_ES
dc.contributor.author Rogalla, Frank es_ES
dc.date.accessioned 2021-02-10T04:31:42Z
dc.date.available 2021-02-10T04:31:42Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 0960-8524 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160986
dc.description.abstract [EN] Feasibility of an AnMBR demonstration plant treating urban wastewater (UWW) at temperatures around 25-30 degrees C was assessed during a 350-day experimental period. The plant was fed with the effluent from the pretreatment of a full-scale municipal WWTP, characterized by high COD and sulfate concentrations. Biodegradability of the UWW reached values up to 87%, although a portion of the biodegradable COD was consumed by sulfate reducing organisms. Effluent COD remained below effluent discharge limits, achieving COD removals above 90%. System operation resulted in a reduction of sludge production of 36-58% compared to theoretical aerobic sludge productions. The membranes were operated at gross transmembrane fluxes above 20 LMH maintaining low membrane fouling propensities for more than 250 days without chemical cleaning requirements. Thus, the system resulted in net positive energy productions and GHG emissions around zero. The results obtained confirm the feasibility of UWW treatment in AnMBR under mild and warm climates. es_ES
dc.description.sponsorship The authors are grateful to the European Commission for the cofinancing of the LIFE MEMORY project (LIFE13 ENV/ES/001353) and the staff of Aguas de Alcazar for their collaboration. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Bioresource Technology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Anaerobic membrane bioreactor (AnMBR) es_ES
dc.subject Industrial-scale membrane es_ES
dc.subject Demonstration plant es_ES
dc.subject Methane production es_ES
dc.subject Urban wastewater (UWW) es_ES
dc.subject Mild/warmer climate es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.biortech.2020.123763 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//LIFE13 ENV%2FES%2F001353/EU/Membrane for ENERGY and WATER RECOVERY/LIFE MEMORY/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Robles Martínez, Á.; Durán, F.; Giménez, JB.; Jiménez, E.; Ribes, J.; Serralta Sevilla, J.; Seco, A.... (2020). Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates. Bioresource Technology. 314:1-12. https://doi.org/10.1016/j.biortech.2020.123763 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.biortech.2020.123763 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 314 es_ES
dc.identifier.pmid 32645574 es_ES
dc.relation.pasarela S\421289 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Aslam, M., McCarty, P. L., Shin, C., Bae, J., & Kim, J. (2017). Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment. Bioresource Technology, 240, 33-41. doi:10.1016/j.biortech.2017.03.017 es_ES
dc.description.references Batstone, D. J., & Virdis, B. (2014). The role of anaerobic digestion in the emerging energy economy. Current Opinion in Biotechnology, 27, 142-149. doi:10.1016/j.copbio.2014.01.013 es_ES
dc.description.references Becker, A. M., Yu, K., Stadler, L. B., & Smith, A. L. (2017). Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies. Bioresource Technology, 223, 131-140. doi:10.1016/j.biortech.2016.10.031 es_ES
dc.description.references Dereli, R. K., Ersahin, M. E., Ozgun, H., Ozturk, I., Jeison, D., van der Zee, F., & van Lier, J. B. (2012). Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresource Technology, 122, 160-170. doi:10.1016/j.biortech.2012.05.139 es_ES
dc.description.references EEA, 2018. Water use and environmental pressures [WWW Document]. es_ES
dc.description.references Eggleston H.S., Buendia L., Miwa K., N.T., T.K., 2006. IPCC Guidelines for National Greenhouse Gas Inventories. es_ES
dc.description.references European Commission, 2017. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: on the 2017 list of Critical Raw Materials for the EU, Official Journal of the European Union. Brussels (Belgium). es_ES
dc.description.references Fedorovich, V., Lens, P., & Kalyuzhnyi, S. (2003). Extension of Anaerobic Digestion Model No. 1 with Processes of Sulfate Reduction. Applied Biochemistry and Biotechnology, 109(1-3), 33-46. doi:10.1385/abab:109:1-3:33 es_ES
dc.description.references Foladori, P., Andreottola, G., Ziglio, G., 2010. Sludge Reduction Technologies in Wastewater Treatment Plants. https://doi.org/10.2166/9781780401706. es_ES
dc.description.references Galib, M., Elbeshbishy, E., Reid, R., Hussain, A., & Lee, H.-S. (2016). Energy-positive food wastewater treatment using an anaerobic membrane bioreactor (AnMBR). Journal of Environmental Management, 182, 477-485. doi:10.1016/j.jenvman.2016.07.098 es_ES
dc.description.references Giménez, J. B., Martí, N., Ferrer, J., & Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 118, 67-72. doi:10.1016/j.biortech.2012.05.019 es_ES
dc.description.references Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014 es_ES
dc.description.references Gouveia, J., Plaza, F., Garralon, G., Fdz-Polanco, F., & Peña, M. (2015). Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions. Bioresource Technology, 185, 225-233. doi:10.1016/j.biortech.2015.03.002 es_ES
dc.description.references Günther, S., Grunert, M., & Müller, S. (2018). Overview of recent advances in phosphorus recovery for fertilizer production. Engineering in Life Sciences, 18(7), 434-439. doi:10.1002/elsc.201700171 es_ES
dc.description.references Jiménez-Benítez, A., Ferrer, J., Rogalla, F., Vázquez, J.R., Seco, A., Robles, Á., 2020. 12 – Energy and environmental impact of an anaerobic membrane bioreactor (AnMBR) demonstration plant treating urban wastewater. In: Mannina, G., Pandey, A., Larroche, C., Ng, H.Y., Ngo, H.H.B.T.-C.D. (Eds.), Elsevier, pp. 289–310. https://doi.org/https://doi.org/10.1016/B978-0-12-819854-4.00012-5. es_ES
dc.description.references Kamali, M., & Khodaparast, Z. (2015). Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicology and Environmental Safety, 114, 326-342. doi:10.1016/j.ecoenv.2014.05.005 es_ES
dc.description.references Kim, J., Kim, K., Ye, H., Lee, E., Shin, C., McCarty, P. L., & Bae, J. (2010). Anaerobic Fluidized Bed Membrane Bioreactor for Wastewater Treatment. Environmental Science & Technology, 45(2), 576-581. doi:10.1021/es1027103 es_ES
dc.description.references Lee, M., Keller, A. A., Chiang, P.-C., Den, W., Wang, H., Hou, C.-H., … Yan, J. (2017). Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Applied Energy, 205, 589-601. doi:10.1016/j.apenergy.2017.08.002 es_ES
dc.description.references Lens, P. N. L., Visser, A., Janssen, A. J. H., Pol, L. W. H., & Lettinga, G. (1998). Biotechnological Treatment of Sulfate-Rich Wastewaters. Critical Reviews in Environmental Science and Technology, 28(1), 41-88. doi:10.1080/10643389891254160 es_ES
dc.description.references Lew, B., Lustig, I., Beliavski, M., Tarre, S., & Green, M. (2011). An integrated UASB-sludge digester system for raw domestic wastewater treatment in temperate climates. Bioresource Technology, 102(7), 4921-4924. doi:10.1016/j.biortech.2011.01.030 es_ES
dc.description.references Li, X., & Wang, X. (2006). Modelling of membrane fouling in a submerged membrane bioreactor. Journal of Membrane Science, 278(1-2), 151-161. doi:10.1016/j.memsci.2005.10.051 es_ES
dc.description.references Maree, J. P., & Strydom, W. F. (1985). Biological sulphate removal in an upflow packed bed reactor. Water Research, 19(9), 1101-1106. doi:10.1016/0043-1354(85)90346-x es_ES
dc.description.references Martin Garcia, I., Mokosch, M., Soares, A., Pidou, M., & Jefferson, B. (2013). Impact on reactor configuration on the performance of anaerobic MBRs: Treatment of settled sewage in temperate climates. Water Research, 47(14), 4853-4860. doi:10.1016/j.watres.2013.05.008 es_ES
dc.description.references Martin, I., Pidou, M., Soares, A., Judd, S., & Jefferson, B. (2011). Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment. Environmental Technology, 32(9), 921-932. doi:10.1080/09593330.2011.565806 es_ES
dc.description.references Martinez-Sosa, D., Helmreich, B., Netter, T., Paris, S., Bischof, F., & Horn, H. (2011). Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions. Bioresource Technology, 102(22), 10377-10385. doi:10.1016/j.biortech.2011.09.012 es_ES
dc.description.references McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic Wastewater Treatment as a Net Energy Producer–Can This be Achieved? Environmental Science & Technology, 45(17), 7100-7106. doi:10.1021/es2014264 es_ES
dc.description.references Moosbrugger, R.E., Wentzel, M.C., Ekama, G.A., Marais, G., 1992. Simple titration procedures to determine H2CO3* alkalinity and short-chain fatty acids in aqueous solutions. Pretoria. es_ES
dc.description.references Ozgun, H., Dereli, R. K., Ersahin, M. E., Kinaci, C., Spanjers, H., & van Lier, J. B. (2013). A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Separation and Purification Technology, 118, 89-104. doi:10.1016/j.seppur.2013.06.036 es_ES
dc.description.references Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049 es_ES
dc.description.references Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2013). Factors that affect the permeability of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Water Research, 47(3), 1277-1288. doi:10.1016/j.watres.2012.11.055 es_ES
dc.description.references Sanchis-Perucho, P., Robles, Á., Durán, F., Ferrer, J., & Seco, A. (2020). PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents. Journal of Membrane Science, 604, 118070. doi:10.1016/j.memsci.2020.118070 es_ES
dc.description.references Seco, A., Mateo, O., Zamorano-López, N., Sanchis-Perucho, P., Serralta, J., Martí, N., … Ferrer, J. (2018). Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology. Environmental Science: Water Research & Technology, 4(11), 1877-1887. doi:10.1039/c8ew00313k es_ES
dc.description.references Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492 es_ES
dc.description.references Shin, C., & Bae, J. (2018). Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: A critical review. Bioresource Technology, 247, 1038-1046. doi:10.1016/j.biortech.2017.09.002 es_ES
dc.description.references Shin, C., McCarty, P. L., Kim, J., & Bae, J. (2014). Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR). Bioresource Technology, 159, 95-103. doi:10.1016/j.biortech.2014.02.060 es_ES
dc.description.references Smith, A. L., Stadler, L. B., Love, N. G., Skerlos, S. J., & Raskin, L. (2012). Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review. Bioresource Technology, 122, 149-159. doi:10.1016/j.biortech.2012.04.055 es_ES
dc.description.references Song, X., Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., & Nghiem, L. D. (2018). Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges. Bioresource Technology, 270, 669-677. doi:10.1016/j.biortech.2018.09.001 es_ES
dc.description.references Stazi, V., & Tomei, M. C. (2018). Enhancing anaerobic treatment of domestic wastewater: State of the art, innovative technologies and future perspectives. Science of The Total Environment, 635, 78-91. doi:10.1016/j.scitotenv.2018.04.071 es_ES
dc.description.references Wang, K. M., Jefferson, B., Soares, A., & McAdam, E. J. (2018). Sustaining membrane permeability during unsteady-state operation of anaerobic membrane bioreactors for municipal wastewater treatment following peak-flow. Journal of Membrane Science, 564, 289-297. doi:10.1016/j.memsci.2018.07.032 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem