Mostrar el registro sencillo del ítem
dc.contributor.author | Robles Martínez, Ángel | es_ES |
dc.contributor.author | Durán, Freddy | es_ES |
dc.contributor.author | Giménez, Juan Bautista | es_ES |
dc.contributor.author | Jiménez, Emérita | es_ES |
dc.contributor.author | Ribes, Josep | es_ES |
dc.contributor.author | Serralta Sevilla, Joaquín | es_ES |
dc.contributor.author | Seco, Aurora | es_ES |
dc.contributor.author | FERRER, J. | es_ES |
dc.contributor.author | Rogalla, Frank | es_ES |
dc.date.accessioned | 2021-02-10T04:31:42Z | |
dc.date.available | 2021-02-10T04:31:42Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.issn | 0960-8524 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160986 | |
dc.description.abstract | [EN] Feasibility of an AnMBR demonstration plant treating urban wastewater (UWW) at temperatures around 25-30 degrees C was assessed during a 350-day experimental period. The plant was fed with the effluent from the pretreatment of a full-scale municipal WWTP, characterized by high COD and sulfate concentrations. Biodegradability of the UWW reached values up to 87%, although a portion of the biodegradable COD was consumed by sulfate reducing organisms. Effluent COD remained below effluent discharge limits, achieving COD removals above 90%. System operation resulted in a reduction of sludge production of 36-58% compared to theoretical aerobic sludge productions. The membranes were operated at gross transmembrane fluxes above 20 LMH maintaining low membrane fouling propensities for more than 250 days without chemical cleaning requirements. Thus, the system resulted in net positive energy productions and GHG emissions around zero. The results obtained confirm the feasibility of UWW treatment in AnMBR under mild and warm climates. | es_ES |
dc.description.sponsorship | The authors are grateful to the European Commission for the cofinancing of the LIFE MEMORY project (LIFE13 ENV/ES/001353) and the staff of Aguas de Alcazar for their collaboration. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Bioresource Technology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Anaerobic membrane bioreactor (AnMBR) | es_ES |
dc.subject | Industrial-scale membrane | es_ES |
dc.subject | Demonstration plant | es_ES |
dc.subject | Methane production | es_ES |
dc.subject | Urban wastewater (UWW) | es_ES |
dc.subject | Mild/warmer climate | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.biortech.2020.123763 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//LIFE13 ENV%2FES%2F001353/EU/Membrane for ENERGY and WATER RECOVERY/LIFE MEMORY/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Robles Martínez, Á.; Durán, F.; Giménez, JB.; Jiménez, E.; Ribes, J.; Serralta Sevilla, J.; Seco, A.... (2020). Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates. Bioresource Technology. 314:1-12. https://doi.org/10.1016/j.biortech.2020.123763 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.biortech.2020.123763 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 314 | es_ES |
dc.identifier.pmid | 32645574 | es_ES |
dc.relation.pasarela | S\421289 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Aslam, M., McCarty, P. L., Shin, C., Bae, J., & Kim, J. (2017). Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment. Bioresource Technology, 240, 33-41. doi:10.1016/j.biortech.2017.03.017 | es_ES |
dc.description.references | Batstone, D. J., & Virdis, B. (2014). The role of anaerobic digestion in the emerging energy economy. Current Opinion in Biotechnology, 27, 142-149. doi:10.1016/j.copbio.2014.01.013 | es_ES |
dc.description.references | Becker, A. M., Yu, K., Stadler, L. B., & Smith, A. L. (2017). Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies. Bioresource Technology, 223, 131-140. doi:10.1016/j.biortech.2016.10.031 | es_ES |
dc.description.references | Dereli, R. K., Ersahin, M. E., Ozgun, H., Ozturk, I., Jeison, D., van der Zee, F., & van Lier, J. B. (2012). Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresource Technology, 122, 160-170. doi:10.1016/j.biortech.2012.05.139 | es_ES |
dc.description.references | EEA, 2018. Water use and environmental pressures [WWW Document]. | es_ES |
dc.description.references | Eggleston H.S., Buendia L., Miwa K., N.T., T.K., 2006. IPCC Guidelines for National Greenhouse Gas Inventories. | es_ES |
dc.description.references | European Commission, 2017. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: on the 2017 list of Critical Raw Materials for the EU, Official Journal of the European Union. Brussels (Belgium). | es_ES |
dc.description.references | Fedorovich, V., Lens, P., & Kalyuzhnyi, S. (2003). Extension of Anaerobic Digestion Model No. 1 with Processes of Sulfate Reduction. Applied Biochemistry and Biotechnology, 109(1-3), 33-46. doi:10.1385/abab:109:1-3:33 | es_ES |
dc.description.references | Foladori, P., Andreottola, G., Ziglio, G., 2010. Sludge Reduction Technologies in Wastewater Treatment Plants. https://doi.org/10.2166/9781780401706. | es_ES |
dc.description.references | Galib, M., Elbeshbishy, E., Reid, R., Hussain, A., & Lee, H.-S. (2016). Energy-positive food wastewater treatment using an anaerobic membrane bioreactor (AnMBR). Journal of Environmental Management, 182, 477-485. doi:10.1016/j.jenvman.2016.07.098 | es_ES |
dc.description.references | Giménez, J. B., Martí, N., Ferrer, J., & Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 118, 67-72. doi:10.1016/j.biortech.2012.05.019 | es_ES |
dc.description.references | Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014 | es_ES |
dc.description.references | Gouveia, J., Plaza, F., Garralon, G., Fdz-Polanco, F., & Peña, M. (2015). Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions. Bioresource Technology, 185, 225-233. doi:10.1016/j.biortech.2015.03.002 | es_ES |
dc.description.references | Günther, S., Grunert, M., & Müller, S. (2018). Overview of recent advances in phosphorus recovery for fertilizer production. Engineering in Life Sciences, 18(7), 434-439. doi:10.1002/elsc.201700171 | es_ES |
dc.description.references | Jiménez-Benítez, A., Ferrer, J., Rogalla, F., Vázquez, J.R., Seco, A., Robles, Á., 2020. 12 – Energy and environmental impact of an anaerobic membrane bioreactor (AnMBR) demonstration plant treating urban wastewater. In: Mannina, G., Pandey, A., Larroche, C., Ng, H.Y., Ngo, H.H.B.T.-C.D. (Eds.), Elsevier, pp. 289–310. https://doi.org/https://doi.org/10.1016/B978-0-12-819854-4.00012-5. | es_ES |
dc.description.references | Kamali, M., & Khodaparast, Z. (2015). Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicology and Environmental Safety, 114, 326-342. doi:10.1016/j.ecoenv.2014.05.005 | es_ES |
dc.description.references | Kim, J., Kim, K., Ye, H., Lee, E., Shin, C., McCarty, P. L., & Bae, J. (2010). Anaerobic Fluidized Bed Membrane Bioreactor for Wastewater Treatment. Environmental Science & Technology, 45(2), 576-581. doi:10.1021/es1027103 | es_ES |
dc.description.references | Lee, M., Keller, A. A., Chiang, P.-C., Den, W., Wang, H., Hou, C.-H., … Yan, J. (2017). Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Applied Energy, 205, 589-601. doi:10.1016/j.apenergy.2017.08.002 | es_ES |
dc.description.references | Lens, P. N. L., Visser, A., Janssen, A. J. H., Pol, L. W. H., & Lettinga, G. (1998). Biotechnological Treatment of Sulfate-Rich Wastewaters. Critical Reviews in Environmental Science and Technology, 28(1), 41-88. doi:10.1080/10643389891254160 | es_ES |
dc.description.references | Lew, B., Lustig, I., Beliavski, M., Tarre, S., & Green, M. (2011). An integrated UASB-sludge digester system for raw domestic wastewater treatment in temperate climates. Bioresource Technology, 102(7), 4921-4924. doi:10.1016/j.biortech.2011.01.030 | es_ES |
dc.description.references | Li, X., & Wang, X. (2006). Modelling of membrane fouling in a submerged membrane bioreactor. Journal of Membrane Science, 278(1-2), 151-161. doi:10.1016/j.memsci.2005.10.051 | es_ES |
dc.description.references | Maree, J. P., & Strydom, W. F. (1985). Biological sulphate removal in an upflow packed bed reactor. Water Research, 19(9), 1101-1106. doi:10.1016/0043-1354(85)90346-x | es_ES |
dc.description.references | Martin Garcia, I., Mokosch, M., Soares, A., Pidou, M., & Jefferson, B. (2013). Impact on reactor configuration on the performance of anaerobic MBRs: Treatment of settled sewage in temperate climates. Water Research, 47(14), 4853-4860. doi:10.1016/j.watres.2013.05.008 | es_ES |
dc.description.references | Martin, I., Pidou, M., Soares, A., Judd, S., & Jefferson, B. (2011). Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment. Environmental Technology, 32(9), 921-932. doi:10.1080/09593330.2011.565806 | es_ES |
dc.description.references | Martinez-Sosa, D., Helmreich, B., Netter, T., Paris, S., Bischof, F., & Horn, H. (2011). Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions. Bioresource Technology, 102(22), 10377-10385. doi:10.1016/j.biortech.2011.09.012 | es_ES |
dc.description.references | McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic Wastewater Treatment as a Net Energy Producer–Can This be Achieved? Environmental Science & Technology, 45(17), 7100-7106. doi:10.1021/es2014264 | es_ES |
dc.description.references | Moosbrugger, R.E., Wentzel, M.C., Ekama, G.A., Marais, G., 1992. Simple titration procedures to determine H2CO3* alkalinity and short-chain fatty acids in aqueous solutions. Pretoria. | es_ES |
dc.description.references | Ozgun, H., Dereli, R. K., Ersahin, M. E., Kinaci, C., Spanjers, H., & van Lier, J. B. (2013). A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Separation and Purification Technology, 118, 89-104. doi:10.1016/j.seppur.2013.06.036 | es_ES |
dc.description.references | Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049 | es_ES |
dc.description.references | Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2013). Factors that affect the permeability of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Water Research, 47(3), 1277-1288. doi:10.1016/j.watres.2012.11.055 | es_ES |
dc.description.references | Sanchis-Perucho, P., Robles, Á., Durán, F., Ferrer, J., & Seco, A. (2020). PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents. Journal of Membrane Science, 604, 118070. doi:10.1016/j.memsci.2020.118070 | es_ES |
dc.description.references | Seco, A., Mateo, O., Zamorano-López, N., Sanchis-Perucho, P., Serralta, J., Martí, N., … Ferrer, J. (2018). Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology. Environmental Science: Water Research & Technology, 4(11), 1877-1887. doi:10.1039/c8ew00313k | es_ES |
dc.description.references | Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492 | es_ES |
dc.description.references | Shin, C., & Bae, J. (2018). Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: A critical review. Bioresource Technology, 247, 1038-1046. doi:10.1016/j.biortech.2017.09.002 | es_ES |
dc.description.references | Shin, C., McCarty, P. L., Kim, J., & Bae, J. (2014). Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR). Bioresource Technology, 159, 95-103. doi:10.1016/j.biortech.2014.02.060 | es_ES |
dc.description.references | Smith, A. L., Stadler, L. B., Love, N. G., Skerlos, S. J., & Raskin, L. (2012). Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review. Bioresource Technology, 122, 149-159. doi:10.1016/j.biortech.2012.04.055 | es_ES |
dc.description.references | Song, X., Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., & Nghiem, L. D. (2018). Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges. Bioresource Technology, 270, 669-677. doi:10.1016/j.biortech.2018.09.001 | es_ES |
dc.description.references | Stazi, V., & Tomei, M. C. (2018). Enhancing anaerobic treatment of domestic wastewater: State of the art, innovative technologies and future perspectives. Science of The Total Environment, 635, 78-91. doi:10.1016/j.scitotenv.2018.04.071 | es_ES |
dc.description.references | Wang, K. M., Jefferson, B., Soares, A., & McAdam, E. J. (2018). Sustaining membrane permeability during unsteady-state operation of anaerobic membrane bioreactors for municipal wastewater treatment following peak-flow. Journal of Membrane Science, 564, 289-297. doi:10.1016/j.memsci.2018.07.032 | es_ES |