Mostrar el registro sencillo del ítem
dc.contributor.author | Sapper, Mayra | es_ES |
dc.contributor.author | Martín-Esparza, M.E. | es_ES |
dc.contributor.author | Chiralt Boix, Mª Amparo | es_ES |
dc.contributor.author | González Martínez, María Consuelo | es_ES |
dc.date.accessioned | 2021-02-10T04:31:51Z | |
dc.date.available | 2021-02-10T04:31:51Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160992 | |
dc.description.abstract | [EN] Different polyvinyl alcohol (PVA) coating formulations incorporating starch (S) and carvacrol (C) as the active agent were applied to Golden Delicious apples to evaluate their effectiveness at controlling weight loss, respiration rate, fruit firmness, and fungal decay against B. cinerea and P. expansum throughout storage time. Moreover, the impact of these coatings on the sensory attributes of the fruit was also analyzed. The application of the coatings did not notably affect the weight loss, firmness changes, or respiration pathway of apples, probably due to the low solid surface density of the coatings. Nevertheless, they exhibited a highly efficient disease control against both black and green mold growths, as a function of the carvacrol content and distribution in the films. The sensory analysis revealed the great persistence of the carvacrol aroma and flavor in the coated samples, which negatively impact the acceptability of the coated products. | es_ES |
dc.description.sponsorship | This research was funded by the Agencia Estatal de Investigacion (Spain) through the projects RTA2015-00037-C02-00 and PID2019-105207RB-I00. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Coatings | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | PVA | es_ES |
dc.subject | Starch | es_ES |
dc.subject | Weight loss | es_ES |
dc.subject | Firmness | es_ES |
dc.subject | Respiration rate | es_ES |
dc.subject | P. expansum | es_ES |
dc.subject | B. cinerea | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Antifungal Polyvinyl Alcohol Coatings Incorporating Carvacrol for the Postharvest Preservation of Golden Delicious Apple | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/coatings10111027 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2015-00037-C02-01/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105207RB-I00/ES/USO DE ACIDOS FENOLICOS PARA LA OBTENCION DE MATERIALES MULTICAPA ACTIVOS PARA EL ENVASADO DE ALIMENTOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Sapper, M.; Martín-Esparza, M.; Chiralt Boix, MA.; González Martínez, MC. (2020). Antifungal Polyvinyl Alcohol Coatings Incorporating Carvacrol for the Postharvest Preservation of Golden Delicious Apple. Coatings. 10(11):1-14. https://doi.org/10.3390/coatings10111027 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/coatings10111027 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.eissn | 2079-6412 | es_ES |
dc.relation.pasarela | S\420233 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Instituto Nacional de Investigaciones Agrarias | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Gong, D., Bi, Y., Jiang, H., Xue, S., Wang, Z., Li, Y., … Prusky, D. (2019). A comparison of postharvest physiology, quality and volatile compounds of ‘Fuji’ and ‘Delicious’ apples inoculated with Penicillium expansum. Postharvest Biology and Technology, 150, 95-104. doi:10.1016/j.postharvbio.2018.12.018 | es_ES |
dc.description.references | Ma, L., He, J., Liu, H., & Zhou, H. (2017). The phenylpropanoid pathway affects apple fruit resistance to Botrytis cinerea. Journal of Phytopathology, 166(3), 206-215. doi:10.1111/jph.12677 | es_ES |
dc.description.references | Nikkhah, M., Hashemi, M., Habibi Najafi, M. B., & Farhoosh, R. (2017). Synergistic effects of some essential oils against fungal spoilage on pear fruit. International Journal of Food Microbiology, 257, 285-294. doi:10.1016/j.ijfoodmicro.2017.06.021 | es_ES |
dc.description.references | Batta, Y. A. (2004). Postharvest biological control of apple gray mold by Trichoderma harzianum Rifai formulated in an invert emulsion. Crop Protection, 23(1), 19-26. doi:10.1016/s0261-2194(03)00163-7 | es_ES |
dc.description.references | Da Rocha Neto, A. C., Navarro, B. B., Canton, L., Maraschin, M., & Di Piero, R. M. (2019). Antifungal activity of palmarosa (Cymbopogon martinii), tea tree (Melaleuca alternifolia) and star anise (Illicium verum) essential oils against Penicillium expansum and their mechanisms of action. LWT, 105, 385-392. doi:10.1016/j.lwt.2019.02.060 | es_ES |
dc.description.references | Dhall, R. K. (2013). Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Critical Reviews in Food Science and Nutrition, 53(5), 435-450. doi:10.1080/10408398.2010.541568 | es_ES |
dc.description.references | Lin, D., & Zhao, Y. (2007). Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Fruits and Vegetables. Comprehensive Reviews in Food Science and Food Safety, 6(3), 60-75. doi:10.1111/j.1541-4337.2007.00018.x | es_ES |
dc.description.references | Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of Essential Oils in Bioactive Edible Coatings: A Review. Food Engineering Reviews, 3(1), 1-16. doi:10.1007/s12393-010-9031-3 | es_ES |
dc.description.references | Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253. doi:10.1016/j.ijfoodmicro.2004.03.022 | es_ES |
dc.description.references | Combrinck, S., Regnier, T., & Kamatou, G. P. P. (2011). In vitro activity of eighteen essential oils and some major components against common postharvest fungal pathogens of fruit. Industrial Crops and Products, 33(2), 344-349. doi:10.1016/j.indcrop.2010.11.011 | es_ES |
dc.description.references | Prakash, B., Kedia, A., Mishra, P. K., & Dubey, N. K. (2015). Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities – Potentials and challenges. Food Control, 47, 381-391. doi:10.1016/j.foodcont.2014.07.023 | es_ES |
dc.description.references | Sivakumar, D., & Bautista-Baños, S. (2014). A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Protection, 64, 27-37. doi:10.1016/j.cropro.2014.05.012 | es_ES |
dc.description.references | Abbaszadeh, S., Sharifzadeh, A., Shokri, H., Khosravi, A. R., & Abbaszadeh, A. (2014). Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. Journal de Mycologie Médicale, 24(2), e51-e56. doi:10.1016/j.mycmed.2014.01.063 | es_ES |
dc.description.references | Camele, I., Altieri, L., De Martino, L., De Feo, V., Mancini, E., & Rana, G. L. (2012). In Vitro Control of Post-Harvest Fruit Rot Fungi by Some Plant Essential Oil Components. International Journal of Molecular Sciences, 13(2), 2290-2300. doi:10.3390/ijms13022290 | es_ES |
dc.description.references | De Souza, E. L., Sales, C. V., de Oliveira, C. E. V., Lopes, L. A. A., da Conceição, M. L., Berger, L. R. R., & Stamford, T. C. M. (2015). Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00732 | es_ES |
dc.description.references | Saad, I. K., Hassan, B., Soumya, E., Moulay, S., & Mounyr, B. (2016). Antifungal Activity and Physico-chemical Surface Properties of the Momentaneously Exposed Penicillium expansum Spores to Carvacrol. Research Journal of Microbiology, 11(6), 178-185. doi:10.3923/jm.2016.178.185 | es_ES |
dc.description.references | Neri, F., Mari, M., & Brigati, S. (2006). Control of Penicillium expansum by plant volatile compounds. Plant Pathology, 55(1), 100-105. doi:10.1111/j.1365-3059.2005.01312.x | es_ES |
dc.description.references | Zabka, M., & Pavela, R. (2013). Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere, 93(6), 1051-1056. doi:10.1016/j.chemosphere.2013.05.076 | es_ES |
dc.description.references | Sapper, M., & Chiralt, A. (2018). Starch-Based Coatings for Preservation of Fruits and Vegetables. Coatings, 8(5), 152. doi:10.3390/coatings8050152 | es_ES |
dc.description.references | Cano, A. I., Cháfer, M., Chiralt, A., & González-Martínez, C. (2015). Physical and microstructural properties of biodegradable films based on pea starch and PVA. Journal of Food Engineering, 167, 59-64. doi:10.1016/j.jfoodeng.2015.06.003 | es_ES |
dc.description.references | Jayakumar, A., K.V., H., T.S., S., Joseph, M., Mathew, S., G., P., … E.K., R. (2019). Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. International Journal of Biological Macromolecules, 136, 395-403. doi:10.1016/j.ijbiomac.2019.06.018 | es_ES |
dc.description.references | Priya, B., Gupta, V. K., Pathania, D., & Singha, A. S. (2014). Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydrate Polymers, 109, 171-179. doi:10.1016/j.carbpol.2014.03.044 | es_ES |
dc.description.references | Russo, M. A. L., O’Sullivan, C., Rounsefell, B., Halley, P. J., Truss, R., & Clarke, W. P. (2009). The anaerobic degradability of thermoplastic starch: Polyvinyl alcohol blends: Potential biodegradable food packaging materials. Bioresource Technology, 100(5), 1705-1710. doi:10.1016/j.biortech.2008.09.026 | es_ES |
dc.description.references | He, L., Lan, W., Ahmed, S., Qin, W., & Liu, Y. (2019). Electrospun polyvinyl alcohol film containing pomegranate peel extract and sodium dehydroacetate for use as food packaging. Food Packaging and Shelf Life, 22, 100390. doi:10.1016/j.fpsl.2019.100390 | es_ES |
dc.description.references | Tampau, A., González-Martinez, C., & Chiralt, A. (2017). Carvacrol encapsulation in starch or PCL based matrices by electrospinning. Journal of Food Engineering, 214, 245-256. doi:10.1016/j.jfoodeng.2017.07.005 | es_ES |
dc.description.references | Marín, A., Atarés, L., Cháfer, M., & Chiralt, A. (2017). Properties of biopolymer dispersions and films used as carriers of the biocontrol agent Candida sake CPA-1. LWT - Food Science and Technology, 79, 60-69. doi:10.1016/j.lwt.2017.01.024 | es_ES |
dc.description.references | Castelló, M. L., Fito, P. J., & Chiralt, A. (2010). Changes in respiration rate and physical properties of strawberries due to osmotic dehydration and storage. Journal of Food Engineering, 97(1), 64-71. doi:10.1016/j.jfoodeng.2009.09.016 | es_ES |
dc.description.references | Saei, A., Tustin, D. S., Zamani, Z., Talaie, A., & Hall, A. J. (2011). Cropping effects on the loss of apple fruit firmness during storage: The relationship between texture retention and fruit dry matter concentration. Scientia Horticulturae, 130(1), 256-265. doi:10.1016/j.scienta.2011.07.008 | es_ES |
dc.description.references | Baert, K., Devlieghere, F., Bo, L., Debevere, J., & De Meulenaer, B. (2008). The effect of inoculum size on the growth of Penicillium expansum in apples. Food Microbiology, 25(1), 212-217. doi:10.1016/j.fm.2007.06.002 | es_ES |
dc.description.references | Daniel, C. K., Lennox, C. L., & Vries, F. A. (2015). In vivo application of garlic extracts in combination with clove oil to prevent postharvest decay caused by Botrytis cinerea, Penicillium expansum and Neofabraea alba on apples. Postharvest Biology and Technology, 99, 88-92. doi:10.1016/j.postharvbio.2014.08.006 | es_ES |
dc.description.references | Expert Committe on Food Additives Fitthy-Fifth Reporthttp://apps.who.int/iris/bitstream/10665/42388/1/WHO_TRS:901.pdf | es_ES |
dc.description.references | Sánchez-González, L., Cháfer, M., Chiralt, A., & González-Martínez, C. (2010). Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydrate Polymers, 82(2), 277-283. doi:10.1016/j.carbpol.2010.04.047 | es_ES |
dc.description.references | Perdones, Á., Escriche, I., Chiralt, A., & Vargas, M. (2016). Effect of chitosan–lemon essential oil coatings on volatile profile of strawberries during storage. Food Chemistry, 197, 979-986. doi:10.1016/j.foodchem.2015.11.054 | es_ES |
dc.description.references | Talón, E., Vargas, M., Chiralt, A., & González-Martínez, C. (2019). Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. LWT, 113, 108290. doi:10.1016/j.lwt.2019.108290 | es_ES |
dc.description.references | Andrade, J., González-Martínez, C., & Chiralt, A. (2020). The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes. Polymers, 12(2), 497. doi:10.3390/polym12020497 | es_ES |
dc.description.references | Wiśniewska, M., Bogatyrov, V., Ostolska, I., Szewczuk-Karpisz, K., Terpiłowski, K., & Nosal-Wiercińska, A. (2015). Impact of poly(vinyl alcohol) adsorption on the surface characteristics of mixed oxide Mn x O y –SiO2. Adsorption, 22(4-6), 417-423. doi:10.1007/s10450-015-9696-2 | es_ES |
dc.description.references | Sapper, M., Palou, L., Pérez-Gago, M. B., & Chiralt, A. (2019). Antifungal Starch–Gellan Edible Coatings with Thyme Essential Oil for the Postharvest Preservation of Apple and Persimmon. Coatings, 9(5), 333. doi:10.3390/coatings9050333 | es_ES |
dc.description.references | Conforti, F. D., & Totty, J. A. (2007). Effect of three lipid/hydrocolloid coatings on shelf life stability of Golden Delicious apples. International Journal of Food Science & Technology, 42(9), 1101-1106. doi:10.1111/j.1365-2621.2006.01365.x | es_ES |
dc.description.references | Miller, K. S., & Krochta, J. M. (1997). Oxygen and aroma barrier properties of edible films: A review. Trends in Food Science & Technology, 8(7), 228-237. doi:10.1016/s0924-2244(97)01051-0 | es_ES |
dc.description.references | Banks, N. H., Dadzie, B. K., & Cleland, D. J. (1993). Reducing gas exchange of fruits with surface coatings. Postharvest Biology and Technology, 3(3), 269-284. doi:10.1016/0925-5214(93)90062-8 | es_ES |
dc.description.references | Kader, A. A., Zagory, D., Kerbel, E. L., & Wang, C. Y. (1989). Modified atmosphere packaging of fruits and vegetables. Critical Reviews in Food Science and Nutrition, 28(1), 1-30. doi:10.1080/10408398909527490 | es_ES |
dc.description.references | Campos-Requena, V. H., Rivas, B. L., Pérez, M. A., Figueroa, C. R., Figueroa, N. E., & Sanfuentes, E. A. (2017). Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries − In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biology and Technology, 129, 29-36. doi:10.1016/j.postharvbio.2017.03.005 | es_ES |
dc.description.references | Grande-Tovar, C. D., Chaves-Lopez, C., Serio, A., Rossi, C., & Paparella, A. (2018). Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends in Food Science & Technology, 78, 61-71. doi:10.1016/j.tifs.2018.05.019 | es_ES |
dc.description.references | Perdones, A., Sánchez-González, L., Chiralt, A., & Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biology and Technology, 70, 32-41. doi:10.1016/j.postharvbio.2012.04.002 | es_ES |
dc.description.references | Qian, D., Du, G., & Chen, J. (2004). Isolation and Culture Characterization of a New Polyvinyl Alcohol-Degrading Strain: Penicillium sp. WSH02-21. World Journal of Microbiology and Biotechnology, 20(6), 587-591. doi:10.1023/b:wibi.0000043172.83610.08 | es_ES |
dc.description.references | Kawai, F., & Hu, X. (2009). Biochemistry of microbial polyvinyl alcohol degradation. Applied Microbiology and Biotechnology, 84(2). doi:10.1007/s00253-009-2113-6 | es_ES |
dc.description.references | Banani, H., Olivieri, L., Santoro, K., Garibaldi, A., Gullino, M., & Spadaro, D. (2018). Thyme and Savory Essential Oil Efficacy and Induction of Resistance against Botrytis cinerea through Priming of Defense Responses in Apple. Foods, 7(2), 11. doi:10.3390/foods7020011 | es_ES |
dc.description.references | Cano Embuena, A. I., Cháfer Nácher, M., Chiralt Boix, A., Molina Pons, M. P., Borrás Llopis, M., Beltran Martínez, M. C., & González Martínez, C. (2016). Quality of goat′s milk cheese as affected by coating with edible chitosan‐essential oil films. International Journal of Dairy Technology, 70(1), 68-76. doi:10.1111/1471-0307.12306 | es_ES |