- -

Antifungal Polyvinyl Alcohol Coatings Incorporating Carvacrol for the Postharvest Preservation of Golden Delicious Apple

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Antifungal Polyvinyl Alcohol Coatings Incorporating Carvacrol for the Postharvest Preservation of Golden Delicious Apple

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sapper, Mayra es_ES
dc.contributor.author Martín-Esparza, M.E. es_ES
dc.contributor.author Chiralt Boix, Mª Amparo es_ES
dc.contributor.author González Martínez, María Consuelo es_ES
dc.date.accessioned 2021-02-10T04:31:51Z
dc.date.available 2021-02-10T04:31:51Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160992
dc.description.abstract [EN] Different polyvinyl alcohol (PVA) coating formulations incorporating starch (S) and carvacrol (C) as the active agent were applied to Golden Delicious apples to evaluate their effectiveness at controlling weight loss, respiration rate, fruit firmness, and fungal decay against B. cinerea and P. expansum throughout storage time. Moreover, the impact of these coatings on the sensory attributes of the fruit was also analyzed. The application of the coatings did not notably affect the weight loss, firmness changes, or respiration pathway of apples, probably due to the low solid surface density of the coatings. Nevertheless, they exhibited a highly efficient disease control against both black and green mold growths, as a function of the carvacrol content and distribution in the films. The sensory analysis revealed the great persistence of the carvacrol aroma and flavor in the coated samples, which negatively impact the acceptability of the coated products. es_ES
dc.description.sponsorship This research was funded by the Agencia Estatal de Investigacion (Spain) through the projects RTA2015-00037-C02-00 and PID2019-105207RB-I00. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Coatings es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject PVA es_ES
dc.subject Starch es_ES
dc.subject Weight loss es_ES
dc.subject Firmness es_ES
dc.subject Respiration rate es_ES
dc.subject P. expansum es_ES
dc.subject B. cinerea es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Antifungal Polyvinyl Alcohol Coatings Incorporating Carvacrol for the Postharvest Preservation of Golden Delicious Apple es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/coatings10111027 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2015-00037-C02-01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105207RB-I00/ES/USO DE ACIDOS FENOLICOS PARA LA OBTENCION DE MATERIALES MULTICAPA ACTIVOS PARA EL ENVASADO DE ALIMENTOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Sapper, M.; Martín-Esparza, M.; Chiralt Boix, MA.; González Martínez, MC. (2020). Antifungal Polyvinyl Alcohol Coatings Incorporating Carvacrol for the Postharvest Preservation of Golden Delicious Apple. Coatings. 10(11):1-14. https://doi.org/10.3390/coatings10111027 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/coatings10111027 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2079-6412 es_ES
dc.relation.pasarela S\420233 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Instituto Nacional de Investigaciones Agrarias es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Gong, D., Bi, Y., Jiang, H., Xue, S., Wang, Z., Li, Y., … Prusky, D. (2019). A comparison of postharvest physiology, quality and volatile compounds of ‘Fuji’ and ‘Delicious’ apples inoculated with Penicillium expansum. Postharvest Biology and Technology, 150, 95-104. doi:10.1016/j.postharvbio.2018.12.018 es_ES
dc.description.references Ma, L., He, J., Liu, H., & Zhou, H. (2017). The phenylpropanoid pathway affects apple fruit resistance to Botrytis cinerea. Journal of Phytopathology, 166(3), 206-215. doi:10.1111/jph.12677 es_ES
dc.description.references Nikkhah, M., Hashemi, M., Habibi Najafi, M. B., & Farhoosh, R. (2017). Synergistic effects of some essential oils against fungal spoilage on pear fruit. International Journal of Food Microbiology, 257, 285-294. doi:10.1016/j.ijfoodmicro.2017.06.021 es_ES
dc.description.references Batta, Y. A. (2004). Postharvest biological control of apple gray mold by Trichoderma harzianum Rifai formulated in an invert emulsion. Crop Protection, 23(1), 19-26. doi:10.1016/s0261-2194(03)00163-7 es_ES
dc.description.references Da Rocha Neto, A. C., Navarro, B. B., Canton, L., Maraschin, M., & Di Piero, R. M. (2019). Antifungal activity of palmarosa (Cymbopogon martinii), tea tree (Melaleuca alternifolia) and star anise (Illicium verum) essential oils against Penicillium expansum and their mechanisms of action. LWT, 105, 385-392. doi:10.1016/j.lwt.2019.02.060 es_ES
dc.description.references Dhall, R. K. (2013). Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Critical Reviews in Food Science and Nutrition, 53(5), 435-450. doi:10.1080/10408398.2010.541568 es_ES
dc.description.references Lin, D., & Zhao, Y. (2007). Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Fruits and Vegetables. Comprehensive Reviews in Food Science and Food Safety, 6(3), 60-75. doi:10.1111/j.1541-4337.2007.00018.x es_ES
dc.description.references Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of Essential Oils in Bioactive Edible Coatings: A Review. Food Engineering Reviews, 3(1), 1-16. doi:10.1007/s12393-010-9031-3 es_ES
dc.description.references Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253. doi:10.1016/j.ijfoodmicro.2004.03.022 es_ES
dc.description.references Combrinck, S., Regnier, T., & Kamatou, G. P. P. (2011). In vitro activity of eighteen essential oils and some major components against common postharvest fungal pathogens of fruit. Industrial Crops and Products, 33(2), 344-349. doi:10.1016/j.indcrop.2010.11.011 es_ES
dc.description.references Prakash, B., Kedia, A., Mishra, P. K., & Dubey, N. K. (2015). Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities – Potentials and challenges. Food Control, 47, 381-391. doi:10.1016/j.foodcont.2014.07.023 es_ES
dc.description.references Sivakumar, D., & Bautista-Baños, S. (2014). A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Protection, 64, 27-37. doi:10.1016/j.cropro.2014.05.012 es_ES
dc.description.references Abbaszadeh, S., Sharifzadeh, A., Shokri, H., Khosravi, A. R., & Abbaszadeh, A. (2014). Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. Journal de Mycologie Médicale, 24(2), e51-e56. doi:10.1016/j.mycmed.2014.01.063 es_ES
dc.description.references Camele, I., Altieri, L., De Martino, L., De Feo, V., Mancini, E., & Rana, G. L. (2012). In Vitro Control of Post-Harvest Fruit Rot Fungi by Some Plant Essential Oil Components. International Journal of Molecular Sciences, 13(2), 2290-2300. doi:10.3390/ijms13022290 es_ES
dc.description.references De Souza, E. L., Sales, C. V., de Oliveira, C. E. V., Lopes, L. A. A., da Conceição, M. L., Berger, L. R. R., & Stamford, T. C. M. (2015). Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00732 es_ES
dc.description.references Saad, I. K., Hassan, B., Soumya, E., Moulay, S., & Mounyr, B. (2016). Antifungal Activity and Physico-chemical Surface Properties of the Momentaneously Exposed Penicillium expansum Spores to Carvacrol. Research Journal of Microbiology, 11(6), 178-185. doi:10.3923/jm.2016.178.185 es_ES
dc.description.references Neri, F., Mari, M., & Brigati, S. (2006). Control of Penicillium expansum by plant volatile compounds. Plant Pathology, 55(1), 100-105. doi:10.1111/j.1365-3059.2005.01312.x es_ES
dc.description.references Zabka, M., & Pavela, R. (2013). Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere, 93(6), 1051-1056. doi:10.1016/j.chemosphere.2013.05.076 es_ES
dc.description.references Sapper, M., & Chiralt, A. (2018). Starch-Based Coatings for Preservation of Fruits and Vegetables. Coatings, 8(5), 152. doi:10.3390/coatings8050152 es_ES
dc.description.references Cano, A. I., Cháfer, M., Chiralt, A., & González-Martínez, C. (2015). Physical and microstructural properties of biodegradable films based on pea starch and PVA. Journal of Food Engineering, 167, 59-64. doi:10.1016/j.jfoodeng.2015.06.003 es_ES
dc.description.references Jayakumar, A., K.V., H., T.S., S., Joseph, M., Mathew, S., G., P., … E.K., R. (2019). Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. International Journal of Biological Macromolecules, 136, 395-403. doi:10.1016/j.ijbiomac.2019.06.018 es_ES
dc.description.references Priya, B., Gupta, V. K., Pathania, D., & Singha, A. S. (2014). Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydrate Polymers, 109, 171-179. doi:10.1016/j.carbpol.2014.03.044 es_ES
dc.description.references Russo, M. A. L., O’Sullivan, C., Rounsefell, B., Halley, P. J., Truss, R., & Clarke, W. P. (2009). The anaerobic degradability of thermoplastic starch: Polyvinyl alcohol blends: Potential biodegradable food packaging materials. Bioresource Technology, 100(5), 1705-1710. doi:10.1016/j.biortech.2008.09.026 es_ES
dc.description.references He, L., Lan, W., Ahmed, S., Qin, W., & Liu, Y. (2019). Electrospun polyvinyl alcohol film containing pomegranate peel extract and sodium dehydroacetate for use as food packaging. Food Packaging and Shelf Life, 22, 100390. doi:10.1016/j.fpsl.2019.100390 es_ES
dc.description.references Tampau, A., González-Martinez, C., & Chiralt, A. (2017). Carvacrol encapsulation in starch or PCL based matrices by electrospinning. Journal of Food Engineering, 214, 245-256. doi:10.1016/j.jfoodeng.2017.07.005 es_ES
dc.description.references Marín, A., Atarés, L., Cháfer, M., & Chiralt, A. (2017). Properties of biopolymer dispersions and films used as carriers of the biocontrol agent Candida sake CPA-1. LWT - Food Science and Technology, 79, 60-69. doi:10.1016/j.lwt.2017.01.024 es_ES
dc.description.references Castelló, M. L., Fito, P. J., & Chiralt, A. (2010). Changes in respiration rate and physical properties of strawberries due to osmotic dehydration and storage. Journal of Food Engineering, 97(1), 64-71. doi:10.1016/j.jfoodeng.2009.09.016 es_ES
dc.description.references Saei, A., Tustin, D. S., Zamani, Z., Talaie, A., & Hall, A. J. (2011). Cropping effects on the loss of apple fruit firmness during storage: The relationship between texture retention and fruit dry matter concentration. Scientia Horticulturae, 130(1), 256-265. doi:10.1016/j.scienta.2011.07.008 es_ES
dc.description.references Baert, K., Devlieghere, F., Bo, L., Debevere, J., & De Meulenaer, B. (2008). The effect of inoculum size on the growth of Penicillium expansum in apples. Food Microbiology, 25(1), 212-217. doi:10.1016/j.fm.2007.06.002 es_ES
dc.description.references Daniel, C. K., Lennox, C. L., & Vries, F. A. (2015). In vivo application of garlic extracts in combination with clove oil to prevent postharvest decay caused by Botrytis cinerea, Penicillium expansum and Neofabraea alba on apples. Postharvest Biology and Technology, 99, 88-92. doi:10.1016/j.postharvbio.2014.08.006 es_ES
dc.description.references Expert Committe on Food Additives Fitthy-Fifth Reporthttp://apps.who.int/iris/bitstream/10665/42388/1/WHO_TRS:901.pdf es_ES
dc.description.references Sánchez-González, L., Cháfer, M., Chiralt, A., & González-Martínez, C. (2010). Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydrate Polymers, 82(2), 277-283. doi:10.1016/j.carbpol.2010.04.047 es_ES
dc.description.references Perdones, Á., Escriche, I., Chiralt, A., & Vargas, M. (2016). Effect of chitosan–lemon essential oil coatings on volatile profile of strawberries during storage. Food Chemistry, 197, 979-986. doi:10.1016/j.foodchem.2015.11.054 es_ES
dc.description.references Talón, E., Vargas, M., Chiralt, A., & González-Martínez, C. (2019). Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. LWT, 113, 108290. doi:10.1016/j.lwt.2019.108290 es_ES
dc.description.references Andrade, J., González-Martínez, C., & Chiralt, A. (2020). The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes. Polymers, 12(2), 497. doi:10.3390/polym12020497 es_ES
dc.description.references Wiśniewska, M., Bogatyrov, V., Ostolska, I., Szewczuk-Karpisz, K., Terpiłowski, K., & Nosal-Wiercińska, A. (2015). Impact of poly(vinyl alcohol) adsorption on the surface characteristics of mixed oxide Mn x O y –SiO2. Adsorption, 22(4-6), 417-423. doi:10.1007/s10450-015-9696-2 es_ES
dc.description.references Sapper, M., Palou, L., Pérez-Gago, M. B., & Chiralt, A. (2019). Antifungal Starch–Gellan Edible Coatings with Thyme Essential Oil for the Postharvest Preservation of Apple and Persimmon. Coatings, 9(5), 333. doi:10.3390/coatings9050333 es_ES
dc.description.references Conforti, F. D., & Totty, J. A. (2007). Effect of three lipid/hydrocolloid coatings on shelf life stability of Golden Delicious apples. International Journal of Food Science & Technology, 42(9), 1101-1106. doi:10.1111/j.1365-2621.2006.01365.x es_ES
dc.description.references Miller, K. S., & Krochta, J. M. (1997). Oxygen and aroma barrier properties of edible films: A review. Trends in Food Science & Technology, 8(7), 228-237. doi:10.1016/s0924-2244(97)01051-0 es_ES
dc.description.references Banks, N. H., Dadzie, B. K., & Cleland, D. J. (1993). Reducing gas exchange of fruits with surface coatings. Postharvest Biology and Technology, 3(3), 269-284. doi:10.1016/0925-5214(93)90062-8 es_ES
dc.description.references Kader, A. A., Zagory, D., Kerbel, E. L., & Wang, C. Y. (1989). Modified atmosphere packaging of fruits and vegetables. Critical Reviews in Food Science and Nutrition, 28(1), 1-30. doi:10.1080/10408398909527490 es_ES
dc.description.references Campos-Requena, V. H., Rivas, B. L., Pérez, M. A., Figueroa, C. R., Figueroa, N. E., & Sanfuentes, E. A. (2017). Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries − In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biology and Technology, 129, 29-36. doi:10.1016/j.postharvbio.2017.03.005 es_ES
dc.description.references Grande-Tovar, C. D., Chaves-Lopez, C., Serio, A., Rossi, C., & Paparella, A. (2018). Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends in Food Science & Technology, 78, 61-71. doi:10.1016/j.tifs.2018.05.019 es_ES
dc.description.references Perdones, A., Sánchez-González, L., Chiralt, A., & Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biology and Technology, 70, 32-41. doi:10.1016/j.postharvbio.2012.04.002 es_ES
dc.description.references Qian, D., Du, G., & Chen, J. (2004). Isolation and Culture Characterization of a New Polyvinyl Alcohol-Degrading Strain: Penicillium sp. WSH02-21. World Journal of Microbiology and Biotechnology, 20(6), 587-591. doi:10.1023/b:wibi.0000043172.83610.08 es_ES
dc.description.references Kawai, F., & Hu, X. (2009). Biochemistry of microbial polyvinyl alcohol degradation. Applied Microbiology and Biotechnology, 84(2). doi:10.1007/s00253-009-2113-6 es_ES
dc.description.references Banani, H., Olivieri, L., Santoro, K., Garibaldi, A., Gullino, M., & Spadaro, D. (2018). Thyme and Savory Essential Oil Efficacy and Induction of Resistance against Botrytis cinerea through Priming of Defense Responses in Apple. Foods, 7(2), 11. doi:10.3390/foods7020011 es_ES
dc.description.references Cano Embuena, A. I., Cháfer Nácher, M., Chiralt Boix, A., Molina Pons, M. P., Borrás Llopis, M., Beltran Martínez, M. C., & González Martínez, C. (2016). Quality of goat′s milk cheese as affected by coating with edible chitosan‐essential oil films. International Journal of Dairy Technology, 70(1), 68-76. doi:10.1111/1471-0307.12306 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem