- -

Rank-one perturbations of matrix pencils

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rank-one perturbations of matrix pencils

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Baragaña, Itziar es_ES
dc.contributor.author Roca Martinez, Alicia es_ES
dc.date.accessioned 2021-02-11T04:32:11Z
dc.date.available 2021-02-11T04:32:11Z
dc.date.issued 2020-12-01 es_ES
dc.identifier.issn 0024-3795 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161046
dc.description.abstract [EN] We solve the problem of characterizing the Kronecker structure of a matrix pencil obtained by a rank-one perturbation of another matrix pencil. The results hold over arbitrary fields. (C) 2020 Elsevier Inc. All rights reserved. es_ES
dc.description.sponsorship Partially supported by "Ministerio de Economia, Industria y Competitividad (MINECO)" of Spain and "Fondo Europeo de Desarrollo Regional (FEDER)" of EU through grants MTM2017-83624-P and MTM2017-90682-REDT, and by UPV/EHU through grant GIU16/42. We would like to thank the Reviewer for his/her valuable comments. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Linear Algebra and its Applications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Matrix pencils es_ES
dc.subject Kronecker structure es_ES
dc.subject Rank perturbation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Rank-one perturbations of matrix pencils es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.laa.2020.07.030 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV%2FEHU//GIU16%2F42/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83624-P/ES/MODELOS POLINOMIALES, SISTEMAS CUADRATICOS Y MATRICES: ESTRUCTURA, LINEALIZACIONES Y PERTURBACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Baragaña, I.; Roca Martinez, A. (2020). Rank-one perturbations of matrix pencils. Linear Algebra and its Applications. 606:170-191. https://doi.org/10.1016/j.laa.2020.07.030 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.laa.2020.07.030 es_ES
dc.description.upvformatpinicio 170 es_ES
dc.description.upvformatpfin 191 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 606 es_ES
dc.relation.pasarela S\424330 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universidad del País Vasco/Euskal Herriko Unibertsitatea es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Baragan͂a, I., & Roca, A. (2019). Weierstrass Structure and Eigenvalue Placement of Regular Matrix Pencils under Low Rank Perturbations. SIAM Journal on Matrix Analysis and Applications, 40(2), 440-453. doi:10.1137/18m1200245 es_ES
dc.description.references Batzke, L. (2014). Generic rank-one perturbations of structured regular matrix pencils. Linear Algebra and its Applications, 458, 638-670. doi:10.1016/j.laa.2014.06.041 es_ES
dc.description.references De Terán, F., & Dopico, F. M. (2007). Low Rank Perturbation of Kronecker Structures without Full Rank. SIAM Journal on Matrix Analysis and Applications, 29(2), 496-529. doi:10.1137/060659922 es_ES
dc.description.references De Terán, F., & Dopico, F. M. (2016). Generic Change of the Partial Multiplicities of Regular Matrix Pencils under Low-Rank Perturbations. SIAM Journal on Matrix Analysis and Applications, 37(3), 823-835. doi:10.1137/15m1022069 es_ES
dc.description.references De Terán, F., Dopico, F. M., & Moro, J. (2008). Low Rank Perturbation of Weierstrass Structure. SIAM Journal on Matrix Analysis and Applications, 30(2), 538-547. doi:10.1137/050633020 es_ES
dc.description.references Dodig, M. (2013). Completion up to a matrix pencil with column minimal indices as the only nontrivial Kronecker invariants. Linear Algebra and its Applications, 438(8), 3155-3173. doi:10.1016/j.laa.2012.12.040 es_ES
dc.description.references Dodig, M., & Stošić, M. (2010). On Convexity of Polynomial Paths and Generalized Majorizations. The Electronic Journal of Combinatorics, 17(1). doi:10.37236/333 es_ES
dc.description.references Dodig, M., & Stosic, M. (2013). On properties of the generalized majorization. The Electronic Journal of Linear Algebra, 26. doi:10.13001/1081-3810.1665 es_ES
dc.description.references Dodig, M., & Stošić, M. (2014). The rank distance problem for pairs of matrices and a completion of quasi-regular matrix pencils. Linear Algebra and its Applications, 457, 313-347. doi:10.1016/j.laa.2014.05.029 es_ES
dc.description.references Dodig, M., & Stošić, M. (2019). The General Matrix Pencil Completion Problem: A Minimal Case. SIAM Journal on Matrix Analysis and Applications, 40(1), 347-369. doi:10.1137/17m1155041 es_ES
dc.description.references Gernandt, H., & Trunk, C. (2017). Eigenvalue Placement for Regular Matrix Pencils with Rank One Perturbations. SIAM Journal on Matrix Analysis and Applications, 38(1), 134-154. doi:10.1137/16m1066877 es_ES
dc.description.references Hörmander, L., & Melin, A. (1994). A Remark on Perturbations of Compact Operators. MATHEMATICA SCANDINAVICA, 75, 255. doi:10.7146/math.scand.a-12518 es_ES
dc.description.references Mehl, C., Mehrmann, V., Ran, A. C. M., & Rodman, L. (2011). Eigenvalue perturbation theory of classes of structured matrices under generic structured rank one perturbations. Linear Algebra and its Applications, 435(3), 687-716. doi:10.1016/j.laa.2010.07.025 es_ES
dc.description.references Moro, J., & Dopico, F. M. (2003). Low Rank Perturbation of Jordan Structure. SIAM Journal on Matrix Analysis and Applications, 25(2), 495-506. doi:10.1137/s0895479802417118 es_ES
dc.description.references Savchenko, S. V. (2003). Mathematical Notes, 74(3/4), 557-568. doi:10.1023/a:1026104129373 es_ES
dc.description.references Savchenko, S. V. (2004). On the Change in the Spectral Properties of a Matrix under Perturbations of Sufficiently Low Rank. Functional Analysis and Its Applications, 38(1), 69-71. doi:10.1023/b:faia.0000024871.00388.4c es_ES
dc.description.references Silva, F. C. (1988). The rank of the difference of matrices with prescribed similarity classes. Linear and Multilinear Algebra, 24(1), 51-58. doi:10.1080/03081088808817897 es_ES
dc.description.references Thompson, R. C. (1980). Invariant Factors Under Rank One Perturbations. Canadian Journal of Mathematics, 32(1), 240-245. doi:10.4153/cjm-1980-018-9 es_ES
dc.description.references Zaballa, I. (1991). Pole Assignment and Additive Perturbations of Fixed Rank. SIAM Journal on Matrix Analysis and Applications, 12(1), 16-23. doi:10.1137/0612003 es_ES
dc.description.references Zaballa, I. (1997). Controllability and Hermite indices of matrix pairs. International Journal of Control, 68(1), 61-86. doi:10.1080/002071797223730 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem