- -

On boundedness and compactness of Toeplitz operators in weighted H-infinity-spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On boundedness and compactness of Toeplitz operators in weighted H-infinity-spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bonet Solves, José Antonio es_ES
dc.contributor.author Lusky, Wolfgang es_ES
dc.contributor.author Taskinen, J. es_ES
dc.date.accessioned 2021-02-11T04:32:18Z
dc.date.available 2021-02-11T04:32:18Z
dc.date.issued 2020-06-01 es_ES
dc.identifier.issn 0022-1236 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161050
dc.description.abstract [EN] We characterize the boundedness and compactness of Toeplitz operators T-a with radial symbols a in weighted H-infinity-spaces H(v)(infinity)on the open unit disc of the complex plane. The weights v are also assumed radial and to satisfy the condition (B) introduced by the second named author. The main technique uses Taylor coefficient multipliers, and the results are first proved for them. We formulate a related sufficient condition for the boundedness and compactness of Toeplitz operators in reflexive weighted Bergman spaces on the disc. We also construct a bounded harmonic symbol f such that T-f is not bounded in H-v(infinity) for any v satisfying mild assumptions. As a corollary, the Bergman projection is never bounded with respect to the corresponding weighted sup-norms. However, we also show that, for normal weights v, all Toeplitz operators with a trigonometric polynomial as the symbol are bounded on H-v(infinity) . (C) 2020 Elsevier Inc. All rights reserved. es_ES
dc.description.sponsorship The research of Bonet was partially supported by the projects MTM2016-76647-P and GV Prometeo/2017/102 (Spain). The research of Taskinen was partially supported by a research grant from the Faculty of Science of the University of Helsinki. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Functional Analysis es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Toeplitz operator es_ES
dc.subject Boundedness es_ES
dc.subject Weighted Bergman space es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On boundedness and compactness of Toeplitz operators in weighted H-infinity-spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jfa.2019.108456 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bonet Solves, JA.; Lusky, W.; Taskinen, J. (2020). On boundedness and compactness of Toeplitz operators in weighted H-infinity-spaces. Journal of Functional Analysis. 278(10):1-26. https://doi.org/10.1016/j.jfa.2019.108456 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jfa.2019.108456 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 26 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 278 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\405038 es_ES
dc.contributor.funder Helsingin Yliopisto es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bonet, J., Lusky, W., & Taskinen, J. (2018). Solid hulls and cores of weighted $$H^\infty $$ H ∞ -spaces. Revista Matemática Complutense, 31(3), 781-804. doi:10.1007/s13163-018-0265-6 es_ES
dc.description.references Bonet, J., Lusky, W., & Taskinen, J. (2019). Solid cores and solid hulls of weighted Bergman spaces. Banach Journal of Mathematical Analysis, 13(2), 468-485. doi:10.1215/17358787-2018-0049 es_ES
dc.description.references Constantin, O., & Peláez, J. Á. (2015). Boundedness of the Bergman projection on Lp-spaces with exponential weights. Bulletin des Sciences Mathématiques, 139(3), 245-268. doi:10.1016/j.bulsci.2014.08.012 es_ES
dc.description.references Dostanić, M. R. (2004). UNBOUNDEDNESS OF THE BERGMAN PROJECTIONS ON $L^{p}$ SPACES WITH EXPONENTIAL WEIGHTS. Proceedings of the Edinburgh Mathematical Society, 47(1), 111-117. doi:10.1017/s0013091501000190 es_ES
dc.description.references Engliš, M. (2008). Toeplitz operators and weighted Bergman kernels. Journal of Functional Analysis, 255(6), 1419-1457. doi:10.1016/j.jfa.2008.06.026 es_ES
dc.description.references Grudsky, S., & Vasilevski, N. (2001). Bergman-Toeplitz operators: Radial component influence. Integral Equations and Operator Theory, 40(1), 16-33. doi:10.1007/bf01202952 es_ES
dc.description.references Harutyunyan, A., & Lusky, W. (2010). On L1-subspaces of holomorphic functions. Studia Mathematica, 198(2), 157-175. doi:10.4064/sm198-2-4 es_ES
dc.description.references Luecking, D. H. (1987). Trace ideal criteria for Toeplitz operators. Journal of Functional Analysis, 73(2), 345-368. doi:10.1016/0022-1236(87)90072-3 es_ES
dc.description.references Luecking, D. H. (2007). Finite rank Toeplitz operators on the Bergman space. Proceedings of the American Mathematical Society, 136(05), 1717-1724. doi:10.1090/s0002-9939-07-09119-8 es_ES
dc.description.references Lusky, W. (1995). On Weighted Spaces of Harmonic and Holomorphic Functions. Journal of the London Mathematical Society, 51(2), 309-320. doi:10.1112/jlms/51.2.309 es_ES
dc.description.references Lusky, W. (2006). On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Studia Mathematica, 175(1), 19-45. doi:10.4064/sm175-1-2 es_ES
dc.description.references Lusky, W., & Taskinen, J. (2008). Bounded holomorphic projections for exponentially decreasing weights. Journal of Function Spaces and Applications, 6(1), 59-70. doi:10.1155/2008/217160 es_ES
dc.description.references Lusky, W., & Taskinen, J. (2011). Toeplitz operators on Bergman spaces and Hardy multipliers. Studia Mathematica, 204(2), 137-154. doi:10.4064/sm204-2-3 es_ES
dc.description.references Mannersalo, P. (2016). Toeplitz operators with locally integrable symbols on Bergman spaces of bounded simply connected domains. Complex Variables and Elliptic Equations, 61(6), 854-874. doi:10.1080/17476933.2015.1120293 es_ES
dc.description.references STROETHOFF, K. (1998). Compact Toeplitz operators on Bergman spaces. Mathematical Proceedings of the Cambridge Philosophical Society, 124(1), 151-160. doi:10.1017/s0305004197002375 es_ES
dc.description.references Taskinen, J., & Virtanen, J. (2010). Toeplitz operators on Bergman spaces with locally integrable symbols. Revista Matemática Iberoamericana, 693-706. doi:10.4171/rmi/614 es_ES
dc.description.references Zorboska, N. (2003). Toeplitz operators with BMO symbols and the Berezin transform. International Journal of Mathematics and Mathematical Sciences, 2003(46), 2929-2945. doi:10.1155/s0161171203212035 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem