Mostrar el registro sencillo del ítem
dc.contributor.author | Bonet Solves, José Antonio | es_ES |
dc.contributor.author | Lusky, Wolfgang | es_ES |
dc.contributor.author | Taskinen, J. | es_ES |
dc.date.accessioned | 2021-02-11T04:32:18Z | |
dc.date.available | 2021-02-11T04:32:18Z | |
dc.date.issued | 2020-06-01 | es_ES |
dc.identifier.issn | 0022-1236 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161050 | |
dc.description.abstract | [EN] We characterize the boundedness and compactness of Toeplitz operators T-a with radial symbols a in weighted H-infinity-spaces H(v)(infinity)on the open unit disc of the complex plane. The weights v are also assumed radial and to satisfy the condition (B) introduced by the second named author. The main technique uses Taylor coefficient multipliers, and the results are first proved for them. We formulate a related sufficient condition for the boundedness and compactness of Toeplitz operators in reflexive weighted Bergman spaces on the disc. We also construct a bounded harmonic symbol f such that T-f is not bounded in H-v(infinity) for any v satisfying mild assumptions. As a corollary, the Bergman projection is never bounded with respect to the corresponding weighted sup-norms. However, we also show that, for normal weights v, all Toeplitz operators with a trigonometric polynomial as the symbol are bounded on H-v(infinity) . (C) 2020 Elsevier Inc. All rights reserved. | es_ES |
dc.description.sponsorship | The research of Bonet was partially supported by the projects MTM2016-76647-P and GV Prometeo/2017/102 (Spain). The research of Taskinen was partially supported by a research grant from the Faculty of Science of the University of Helsinki. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Functional Analysis | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Toeplitz operator | es_ES |
dc.subject | Boundedness | es_ES |
dc.subject | Weighted Bergman space | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On boundedness and compactness of Toeplitz operators in weighted H-infinity-spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jfa.2019.108456 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bonet Solves, JA.; Lusky, W.; Taskinen, J. (2020). On boundedness and compactness of Toeplitz operators in weighted H-infinity-spaces. Journal of Functional Analysis. 278(10):1-26. https://doi.org/10.1016/j.jfa.2019.108456 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jfa.2019.108456 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 26 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 278 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.pasarela | S\405038 | es_ES |
dc.contributor.funder | Helsingin Yliopisto | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Bonet, J., Lusky, W., & Taskinen, J. (2018). Solid hulls and cores of weighted $$H^\infty $$ H ∞ -spaces. Revista Matemática Complutense, 31(3), 781-804. doi:10.1007/s13163-018-0265-6 | es_ES |
dc.description.references | Bonet, J., Lusky, W., & Taskinen, J. (2019). Solid cores and solid hulls of weighted Bergman spaces. Banach Journal of Mathematical Analysis, 13(2), 468-485. doi:10.1215/17358787-2018-0049 | es_ES |
dc.description.references | Constantin, O., & Peláez, J. Á. (2015). Boundedness of the Bergman projection on Lp-spaces with exponential weights. Bulletin des Sciences Mathématiques, 139(3), 245-268. doi:10.1016/j.bulsci.2014.08.012 | es_ES |
dc.description.references | Dostanić, M. R. (2004). UNBOUNDEDNESS OF THE BERGMAN PROJECTIONS ON $L^{p}$ SPACES WITH EXPONENTIAL WEIGHTS. Proceedings of the Edinburgh Mathematical Society, 47(1), 111-117. doi:10.1017/s0013091501000190 | es_ES |
dc.description.references | Engliš, M. (2008). Toeplitz operators and weighted Bergman kernels. Journal of Functional Analysis, 255(6), 1419-1457. doi:10.1016/j.jfa.2008.06.026 | es_ES |
dc.description.references | Grudsky, S., & Vasilevski, N. (2001). Bergman-Toeplitz operators: Radial component influence. Integral Equations and Operator Theory, 40(1), 16-33. doi:10.1007/bf01202952 | es_ES |
dc.description.references | Harutyunyan, A., & Lusky, W. (2010). On L1-subspaces of holomorphic functions. Studia Mathematica, 198(2), 157-175. doi:10.4064/sm198-2-4 | es_ES |
dc.description.references | Luecking, D. H. (1987). Trace ideal criteria for Toeplitz operators. Journal of Functional Analysis, 73(2), 345-368. doi:10.1016/0022-1236(87)90072-3 | es_ES |
dc.description.references | Luecking, D. H. (2007). Finite rank Toeplitz operators on the Bergman space. Proceedings of the American Mathematical Society, 136(05), 1717-1724. doi:10.1090/s0002-9939-07-09119-8 | es_ES |
dc.description.references | Lusky, W. (1995). On Weighted Spaces of Harmonic and Holomorphic Functions. Journal of the London Mathematical Society, 51(2), 309-320. doi:10.1112/jlms/51.2.309 | es_ES |
dc.description.references | Lusky, W. (2006). On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Studia Mathematica, 175(1), 19-45. doi:10.4064/sm175-1-2 | es_ES |
dc.description.references | Lusky, W., & Taskinen, J. (2008). Bounded holomorphic projections for exponentially decreasing weights. Journal of Function Spaces and Applications, 6(1), 59-70. doi:10.1155/2008/217160 | es_ES |
dc.description.references | Lusky, W., & Taskinen, J. (2011). Toeplitz operators on Bergman spaces and Hardy multipliers. Studia Mathematica, 204(2), 137-154. doi:10.4064/sm204-2-3 | es_ES |
dc.description.references | Mannersalo, P. (2016). Toeplitz operators with locally integrable symbols on Bergman spaces of bounded simply connected domains. Complex Variables and Elliptic Equations, 61(6), 854-874. doi:10.1080/17476933.2015.1120293 | es_ES |
dc.description.references | STROETHOFF, K. (1998). Compact Toeplitz operators on Bergman spaces. Mathematical Proceedings of the Cambridge Philosophical Society, 124(1), 151-160. doi:10.1017/s0305004197002375 | es_ES |
dc.description.references | Taskinen, J., & Virtanen, J. (2010). Toeplitz operators on Bergman spaces with locally integrable symbols. Revista Matemática Iberoamericana, 693-706. doi:10.4171/rmi/614 | es_ES |
dc.description.references | Zorboska, N. (2003). Toeplitz operators with BMO symbols and the Berezin transform. International Journal of Mathematics and Mathematical Sciences, 2003(46), 2929-2945. doi:10.1155/s0161171203212035 | es_ES |