- -

On boundedness and compactness of Toeplitz operators in weighted H-infinity-spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On boundedness and compactness of Toeplitz operators in weighted H-infinity-spaces

Mostrar el registro completo del ítem

Bonet Solves, JA.; Lusky, W.; Taskinen, J. (2020). On boundedness and compactness of Toeplitz operators in weighted H-infinity-spaces. Journal of Functional Analysis. 278(10):1-26. https://doi.org/10.1016/j.jfa.2019.108456

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161050

Ficheros en el ítem

Metadatos del ítem

Título: On boundedness and compactness of Toeplitz operators in weighted H-infinity-spaces
Autor: Bonet Solves, José Antonio Lusky, Wolfgang Taskinen, J.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We characterize the boundedness and compactness of Toeplitz operators T-a with radial symbols a in weighted H-infinity-spaces H(v)(infinity)on the open unit disc of the complex plane. The weights v are also assumed ...[+]
Palabras clave: Toeplitz operator , Boundedness , Weighted Bergman space
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Functional Analysis. (issn: 0022-1236 )
DOI: 10.1016/j.jfa.2019.108456
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jfa.2019.108456
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/
Agradecimientos:
The research of Bonet was partially supported by the projects MTM2016-76647-P and GV Prometeo/2017/102 (Spain). The research of Taskinen was partially supported by a research grant from the Faculty of Science of the ...[+]
Tipo: Artículo

References

Bonet, J., Lusky, W., & Taskinen, J. (2018). Solid hulls and cores of weighted $$H^\infty $$ H ∞ -spaces. Revista Matemática Complutense, 31(3), 781-804. doi:10.1007/s13163-018-0265-6

Bonet, J., Lusky, W., & Taskinen, J. (2019). Solid cores and solid hulls of weighted Bergman spaces. Banach Journal of Mathematical Analysis, 13(2), 468-485. doi:10.1215/17358787-2018-0049

Constantin, O., & Peláez, J. Á. (2015). Boundedness of the Bergman projection on Lp-spaces with exponential weights. Bulletin des Sciences Mathématiques, 139(3), 245-268. doi:10.1016/j.bulsci.2014.08.012 [+]
Bonet, J., Lusky, W., & Taskinen, J. (2018). Solid hulls and cores of weighted $$H^\infty $$ H ∞ -spaces. Revista Matemática Complutense, 31(3), 781-804. doi:10.1007/s13163-018-0265-6

Bonet, J., Lusky, W., & Taskinen, J. (2019). Solid cores and solid hulls of weighted Bergman spaces. Banach Journal of Mathematical Analysis, 13(2), 468-485. doi:10.1215/17358787-2018-0049

Constantin, O., & Peláez, J. Á. (2015). Boundedness of the Bergman projection on Lp-spaces with exponential weights. Bulletin des Sciences Mathématiques, 139(3), 245-268. doi:10.1016/j.bulsci.2014.08.012

Dostanić, M. R. (2004). UNBOUNDEDNESS OF THE BERGMAN PROJECTIONS ON $L^{p}$ SPACES WITH EXPONENTIAL WEIGHTS. Proceedings of the Edinburgh Mathematical Society, 47(1), 111-117. doi:10.1017/s0013091501000190

Engliš, M. (2008). Toeplitz operators and weighted Bergman kernels. Journal of Functional Analysis, 255(6), 1419-1457. doi:10.1016/j.jfa.2008.06.026

Grudsky, S., & Vasilevski, N. (2001). Bergman-Toeplitz operators: Radial component influence. Integral Equations and Operator Theory, 40(1), 16-33. doi:10.1007/bf01202952

Harutyunyan, A., & Lusky, W. (2010). On L1-subspaces of holomorphic functions. Studia Mathematica, 198(2), 157-175. doi:10.4064/sm198-2-4

Luecking, D. H. (1987). Trace ideal criteria for Toeplitz operators. Journal of Functional Analysis, 73(2), 345-368. doi:10.1016/0022-1236(87)90072-3

Luecking, D. H. (2007). Finite rank Toeplitz operators on the Bergman space. Proceedings of the American Mathematical Society, 136(05), 1717-1724. doi:10.1090/s0002-9939-07-09119-8

Lusky, W. (1995). On Weighted Spaces of Harmonic and Holomorphic Functions. Journal of the London Mathematical Society, 51(2), 309-320. doi:10.1112/jlms/51.2.309

Lusky, W. (2006). On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Studia Mathematica, 175(1), 19-45. doi:10.4064/sm175-1-2

Lusky, W., & Taskinen, J. (2008). Bounded holomorphic projections for exponentially decreasing weights. Journal of Function Spaces and Applications, 6(1), 59-70. doi:10.1155/2008/217160

Lusky, W., & Taskinen, J. (2011). Toeplitz operators on Bergman spaces and Hardy multipliers. Studia Mathematica, 204(2), 137-154. doi:10.4064/sm204-2-3

Mannersalo, P. (2016). Toeplitz operators with locally integrable symbols on Bergman spaces of bounded simply connected domains. Complex Variables and Elliptic Equations, 61(6), 854-874. doi:10.1080/17476933.2015.1120293

STROETHOFF, K. (1998). Compact Toeplitz operators on Bergman spaces. Mathematical Proceedings of the Cambridge Philosophical Society, 124(1), 151-160. doi:10.1017/s0305004197002375

Taskinen, J., & Virtanen, J. (2010). Toeplitz operators on Bergman spaces with locally integrable symbols. Revista Matemática Iberoamericana, 693-706. doi:10.4171/rmi/614

Zorboska, N. (2003). Toeplitz operators with BMO symbols and the Berezin transform. International Journal of Mathematics and Mathematical Sciences, 2003(46), 2929-2945. doi:10.1155/s0161171203212035

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem