Mostrar el registro sencillo del ítem
dc.contributor.author | Penadés-Plà, Vicent | es_ES |
dc.contributor.author | Yepes, V. | es_ES |
dc.contributor.author | García-Segura, Tatiana | es_ES |
dc.date.accessioned | 2021-02-11T04:32:23Z | |
dc.date.available | 2021-02-11T04:32:23Z | |
dc.date.issued | 2020-04-15 | es_ES |
dc.identifier.issn | 0141-0296 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161052 | |
dc.description.abstract | [EN] In recent years, there is a trend toward the construction of sustainable structures. The goal of sustainability in structures involves several criteria that are normally opposed, leading to a decision-making process. In this process, there is a subjective portion that cannot be eliminated, such as qualitative criteria assessment of and assigning criteria importance. In these cases, decision-makers become part of the decision-making process, assessing it according to their preferences. In this work, a methodology to reduce the participation of decision-makers in achieving the goal of sustainability in structures is proposed. For this purpose, principal component analysis, kriging-based optimization, and the analytical hierarchy process are used. Principal component analysis is used to reduce the complexity of the problem according to the highly correlated criteria. Kriging-based optimization obtains sustainable solutions depending on all the perspectives of sustainability. Finally, the analytical hierarchy process is applied to reduce the optimized sustainable solutions according to the decision-maker's views. This methodology is applied a continuous concrete box-girder pedestrian bridge deck to reach sustainable designs. This methodology allows a reduction of the complexity of the decision-making problem and also obtains sustainable robust solutions. | es_ES |
dc.description.sponsorship | The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Engineering Structures | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Post-tensioned concrete | es_ES |
dc.subject | Box-girder bridge | es_ES |
dc.subject | Sustainability assessment | es_ES |
dc.subject | Kriging | es_ES |
dc.subject | Principal Component Analysis | es_ES |
dc.subject | Decision-making | es_ES |
dc.subject | Robust design | es_ES |
dc.subject.classification | PROYECTOS DE INGENIERIA | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Robust decision-making design for sustainable pedestrian concrete bridges | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.engstruct.2019.109968 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.description.bibliographicCitation | Penadés-Plà, V.; Yepes, V.; García-Segura, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Engineering Structures. 209:1-10. https://doi.org/10.1016/j.engstruct.2019.109968 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.engstruct.2019.109968 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 209 | es_ES |
dc.relation.pasarela | S\406590 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | García-Segura, T., & Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325-336. doi:10.1016/j.engstruct.2016.07.012 | es_ES |
dc.description.references | Zastrow, P., Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: A parametric study. Journal of Cleaner Production, 140, 1037-1048. doi:10.1016/j.jclepro.2016.10.085 | es_ES |
dc.description.references | García-Segura, T., Yepes, V., Alcalá, J., & Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112-122. doi:10.1016/j.engstruct.2015.03.015 | es_ES |
dc.description.references | Du, G., & Karoumi, R. (2012). Life cycle assessment framework for railway bridges: literature survey and critical issues. Structure and Infrastructure Engineering, 10(3), 277-294. doi:10.1080/15732479.2012.749289 | es_ES |
dc.description.references | Gervásio, H., & Simões da Silva, L. (2012). A probabilistic decision-making approach for the sustainable assessment of infrastructures. Expert Systems with Applications, 39(8), 7121-7131. doi:10.1016/j.eswa.2012.01.032 | es_ES |
dc.description.references | Pan, N.-F. (2008). Fuzzy AHP approach for selecting the suitable bridge construction method. Automation in Construction, 17(8), 958-965. doi:10.1016/j.autcon.2008.03.005 | es_ES |
dc.description.references | Aghdaie, M. H., Zolfani, S. H., & Zavadskas, E. K. (2012). Prioritizing constructing projects of municipalities based on ahp and copras-g: a case study about footbridges in Iran. The Baltic Journal of Road and Bridge Engineering, 7(2), 145-153. doi:10.3846/bjrbe.2012.20 | es_ES |
dc.description.references | Zavadskas, E. K., Liias, R., & Turskis, Z. (2008). Multi-attribute decision-making methods for assessment of quality in bridges and road construction: State-of-the-art surveys. The Baltic Journal of Road and Bridge Engineering, 3(3), 152-160. doi:10.3846/1822-427x.2008.3.152-160 | es_ES |
dc.description.references | Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2016). A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability, 8(12), 1295. doi:10.3390/su8121295 | es_ES |
dc.description.references | Yehia, S., Abudayyeh, O., Fazal, I., & Randolph, D. (2008). A decision support system for concrete bridge deck maintenance. Advances in Engineering Software, 39(3), 202-210. doi:10.1016/j.advengsoft.2007.02.002 | es_ES |
dc.description.references | Pons, J. J., Penadés-Plà, V., Yepes, V., & Martí, J. V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192, 411-420. doi:10.1016/j.jclepro.2018.04.268 | es_ES |
dc.description.references | Penadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability, 9(10), 1864. doi:10.3390/su9101864 | es_ES |
dc.description.references | Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592-1600. doi:10.1016/j.enbuild.2010.05.007 | es_ES |
dc.description.references | Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455. doi:10.1016/s0377-2217(03)00020-1 | es_ES |
dc.description.references | HOTELLING, H. (1936). RELATIONS BETWEEN TWO SETS OF VARIATES. Biometrika, 28(3-4), 321-377. doi:10.1093/biomet/28.3-4.321 | es_ES |
dc.description.references | Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22(3), 239-252. doi:10.1007/bf00889887 | es_ES |
dc.description.references | Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. Mathematical Modelling, 9(3-5), 161-176. doi:10.1016/0270-0255(87)90473-8 | es_ES |
dc.description.references | Penadés-Plà, V., García-Segura, T., & Yepes, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179, 556-565. doi:10.1016/j.engstruct.2018.11.015 | es_ES |
dc.description.references | Catalonia Institute of Construction Technology. BEDEC PR/PCT ITEC material database; 2016. | es_ES |
dc.description.references | Goedkoop M, Heijungs R, Huijbregts M, Schryver A De, Struijs J, Zelm R Van. ReCiPe 2008. A life cycle impact assessment which comprises harmonised category indicators at midpoint and at the endpoint level. Netherlands; 2009. doi:http://doi.org/10.029/2003JD004283. | es_ES |
dc.description.references | Ecoinvent Center. Ecoinvent v3.3; 2016. | es_ES |
dc.description.references | Sabatino, S., Frangopol, D. M., & Dong, Y. (2015). Sustainability-informed maintenance optimization of highway bridges considering multi-attribute utility and risk attitude. Engineering Structures, 102, 310-321. doi:10.1016/j.engstruct.2015.07.030 | es_ES |
dc.description.references | Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36. doi:10.1007/bf02291575 | es_ES |
dc.description.references | Kaiser, H. F. (1960). The Application of Electronic Computers to Factor Analysis. Educational and Psychological Measurement, 20(1), 141-151. doi:10.1177/001316446002000116 | es_ES |
dc.description.references | Kleijnen, J. P. C. (2009). Kriging metamodeling in simulation: A review. European Journal of Operational Research, 192(3), 707-716. doi:10.1016/j.ejor.2007.10.013 | es_ES |
dc.description.references | Ministerio de Fomento. EHE-08: Code on structural concrete. Madrid, Spain; 2008. | es_ES |
dc.description.references | Ministerio de Fomento. IAP-11: Code on the actions for the design of road bridges. Madrid, Spain; 2011. | es_ES |
dc.description.references | European Committee for Standardization. EN 1001-2:2003. Eurocode 1: Actions on structures- Part 2: Traffic loads bridges. Brussels, Belgium; 2003. | es_ES |
dc.description.references | European Committee for Standardisation. EN1992-2:2005. Eurocode 2: Design of concrete structures- Part 2: Concrete Bridge-Design and detailing rules. Brussels; 2005. | es_ES |
dc.description.references | Saaty TL. New York: The Analytic Hierarchy Process; 1980. | es_ES |
dc.description.references | Chou, J.-S., Pham, A.-D., & Wang, H. (2013). Bidding strategy to support decision-making by integrating fuzzy AHP and regression-based simulation. Automation in Construction, 35, 517-527. doi:10.1016/j.autcon.2013.06.007 | es_ES |
dc.description.references | Miller GA. The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information n.d. | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |