- -

Robust decision-making design for sustainable pedestrian concrete bridges

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Robust decision-making design for sustainable pedestrian concrete bridges

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Penadés-Plà, Vicent es_ES
dc.contributor.author Yepes, V. es_ES
dc.contributor.author García-Segura, Tatiana es_ES
dc.date.accessioned 2021-02-11T04:32:23Z
dc.date.available 2021-02-11T04:32:23Z
dc.date.issued 2020-04-15 es_ES
dc.identifier.issn 0141-0296 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161052
dc.description.abstract [EN] In recent years, there is a trend toward the construction of sustainable structures. The goal of sustainability in structures involves several criteria that are normally opposed, leading to a decision-making process. In this process, there is a subjective portion that cannot be eliminated, such as qualitative criteria assessment of and assigning criteria importance. In these cases, decision-makers become part of the decision-making process, assessing it according to their preferences. In this work, a methodology to reduce the participation of decision-makers in achieving the goal of sustainability in structures is proposed. For this purpose, principal component analysis, kriging-based optimization, and the analytical hierarchy process are used. Principal component analysis is used to reduce the complexity of the problem according to the highly correlated criteria. Kriging-based optimization obtains sustainable solutions depending on all the perspectives of sustainability. Finally, the analytical hierarchy process is applied to reduce the optimized sustainable solutions according to the decision-maker's views. This methodology is applied a continuous concrete box-girder pedestrian bridge deck to reach sustainable designs. This methodology allows a reduction of the complexity of the decision-making problem and also obtains sustainable robust solutions. es_ES
dc.description.sponsorship The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Engineering Structures es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Post-tensioned concrete es_ES
dc.subject Box-girder bridge es_ES
dc.subject Sustainability assessment es_ES
dc.subject Kriging es_ES
dc.subject Principal Component Analysis es_ES
dc.subject Decision-making es_ES
dc.subject Robust design es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Robust decision-making design for sustainable pedestrian concrete bridges es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engstruct.2019.109968 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.description.bibliographicCitation Penadés-Plà, V.; Yepes, V.; García-Segura, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Engineering Structures. 209:1-10. https://doi.org/10.1016/j.engstruct.2019.109968 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.engstruct.2019.109968 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 209 es_ES
dc.relation.pasarela S\406590 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references García-Segura, T., & Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325-336. doi:10.1016/j.engstruct.2016.07.012 es_ES
dc.description.references Zastrow, P., Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: A parametric study. Journal of Cleaner Production, 140, 1037-1048. doi:10.1016/j.jclepro.2016.10.085 es_ES
dc.description.references García-Segura, T., Yepes, V., Alcalá, J., & Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112-122. doi:10.1016/j.engstruct.2015.03.015 es_ES
dc.description.references Du, G., & Karoumi, R. (2012). Life cycle assessment framework for railway bridges: literature survey and critical issues. Structure and Infrastructure Engineering, 10(3), 277-294. doi:10.1080/15732479.2012.749289 es_ES
dc.description.references Gervásio, H., & Simões da Silva, L. (2012). A probabilistic decision-making approach for the sustainable assessment of infrastructures. Expert Systems with Applications, 39(8), 7121-7131. doi:10.1016/j.eswa.2012.01.032 es_ES
dc.description.references Pan, N.-F. (2008). Fuzzy AHP approach for selecting the suitable bridge construction method. Automation in Construction, 17(8), 958-965. doi:10.1016/j.autcon.2008.03.005 es_ES
dc.description.references Aghdaie, M. H., Zolfani, S. H., & Zavadskas, E. K. (2012). Prioritizing constructing projects of municipalities based on ahp and copras-g: a case study about footbridges in Iran. The Baltic Journal of Road and Bridge Engineering, 7(2), 145-153. doi:10.3846/bjrbe.2012.20 es_ES
dc.description.references Zavadskas, E. K., Liias, R., & Turskis, Z. (2008). Multi-attribute decision-making methods for assessment of quality in bridges and road construction: State-of-the-art surveys. The Baltic Journal of Road and Bridge Engineering, 3(3), 152-160. doi:10.3846/1822-427x.2008.3.152-160 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2016). A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability, 8(12), 1295. doi:10.3390/su8121295 es_ES
dc.description.references Yehia, S., Abudayyeh, O., Fazal, I., & Randolph, D. (2008). A decision support system for concrete bridge deck maintenance. Advances in Engineering Software, 39(3), 202-210. doi:10.1016/j.advengsoft.2007.02.002 es_ES
dc.description.references Pons, J. J., Penadés-Plà, V., Yepes, V., & Martí, J. V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192, 411-420. doi:10.1016/j.jclepro.2018.04.268 es_ES
dc.description.references Penadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability, 9(10), 1864. doi:10.3390/su9101864 es_ES
dc.description.references Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592-1600. doi:10.1016/j.enbuild.2010.05.007 es_ES
dc.description.references Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455. doi:10.1016/s0377-2217(03)00020-1 es_ES
dc.description.references HOTELLING, H. (1936). RELATIONS BETWEEN TWO SETS OF VARIATES. Biometrika, 28(3-4), 321-377. doi:10.1093/biomet/28.3-4.321 es_ES
dc.description.references Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22(3), 239-252. doi:10.1007/bf00889887 es_ES
dc.description.references Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. Mathematical Modelling, 9(3-5), 161-176. doi:10.1016/0270-0255(87)90473-8 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., & Yepes, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179, 556-565. doi:10.1016/j.engstruct.2018.11.015 es_ES
dc.description.references Catalonia Institute of Construction Technology. BEDEC PR/PCT ITEC material database; 2016. es_ES
dc.description.references Goedkoop M, Heijungs R, Huijbregts M, Schryver A De, Struijs J, Zelm R Van. ReCiPe 2008. A life cycle impact assessment which comprises harmonised category indicators at midpoint and at the endpoint level. Netherlands; 2009. doi:http://doi.org/10.029/2003JD004283. es_ES
dc.description.references Ecoinvent Center. Ecoinvent v3.3; 2016. es_ES
dc.description.references Sabatino, S., Frangopol, D. M., & Dong, Y. (2015). Sustainability-informed maintenance optimization of highway bridges considering multi-attribute utility and risk attitude. Engineering Structures, 102, 310-321. doi:10.1016/j.engstruct.2015.07.030 es_ES
dc.description.references Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36. doi:10.1007/bf02291575 es_ES
dc.description.references Kaiser, H. F. (1960). The Application of Electronic Computers to Factor Analysis. Educational and Psychological Measurement, 20(1), 141-151. doi:10.1177/001316446002000116 es_ES
dc.description.references Kleijnen, J. P. C. (2009). Kriging metamodeling in simulation: A review. European Journal of Operational Research, 192(3), 707-716. doi:10.1016/j.ejor.2007.10.013 es_ES
dc.description.references Ministerio de Fomento. EHE-08: Code on structural concrete. Madrid, Spain; 2008. es_ES
dc.description.references Ministerio de Fomento. IAP-11: Code on the actions for the design of road bridges. Madrid, Spain; 2011. es_ES
dc.description.references European Committee for Standardization. EN 1001-2:2003. Eurocode 1: Actions on structures- Part 2: Traffic loads bridges. Brussels, Belgium; 2003. es_ES
dc.description.references European Committee for Standardisation. EN1992-2:2005. Eurocode 2: Design of concrete structures- Part 2: Concrete Bridge-Design and detailing rules. Brussels; 2005. es_ES
dc.description.references Saaty TL. New York: The Analytic Hierarchy Process; 1980. es_ES
dc.description.references Chou, J.-S., Pham, A.-D., & Wang, H. (2013). Bidding strategy to support decision-making by integrating fuzzy AHP and regression-based simulation. Automation in Construction, 35, 517-527. doi:10.1016/j.autcon.2013.06.007 es_ES
dc.description.references Miller GA. The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information n.d. es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem