- -

Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario

Mostrar el registro completo del ítem

Adam, JM.; Buitrago, M.; Bertolesi, E.; Sagaseta, J.; Moragues, JJ. (2020). Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario. Engineering Structures. 210:1-14. https://doi.org/10.1016/j.engstruct.2020.110414

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161055

Ficheros en el ítem

Metadatos del ítem

Título: Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario
Autor: Adam, Jose M Buitrago, Manuel Bertolesi, Elisa Sagaseta, Juan Moragues, Juan J
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] The topic of robustness and progressive collapse of structures has attracted significant attention within the field of structural engineering recently. This is reflected by the rise in the number of scientific papers ...[+]
Palabras clave: Experimental study , Extreme events , Progressive collapse , Robustness , RC structures , Corner columns
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Engineering Structures. (issn: 0141-0296 )
DOI: 10.1016/j.engstruct.2020.110414
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.engstruct.2020.110414
Agradecimientos:
This work was carried out with the support of a 2017 Leonardo Grant for Researchers and Cultural Creators from the BBVA Foundation. The authors would also like to express their gratitude to the Levantina, Ingenieria y ...[+]
Tipo: Artículo

References

Adam, J. M., Parisi, F., Sagaseta, J., & Lu, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 173, 122-149. doi:10.1016/j.engstruct.2018.06.082

Dat, P. X., & Tan, K. H. (2015). Experimental Response of Beam-Slab Substructures Subject to Penultimate-External Column Removal. Journal of Structural Engineering, 141(7), 04014170. doi:10.1061/(asce)st.1943-541x.0001123

Qian, K., & Li, B. (2016). Resilience of Flat Slab Structures in Different Phases of Progressive Collapse. ACI Structural Journal, 113(3). doi:10.14359/51688619 [+]
Adam, J. M., Parisi, F., Sagaseta, J., & Lu, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 173, 122-149. doi:10.1016/j.engstruct.2018.06.082

Dat, P. X., & Tan, K. H. (2015). Experimental Response of Beam-Slab Substructures Subject to Penultimate-External Column Removal. Journal of Structural Engineering, 141(7), 04014170. doi:10.1061/(asce)st.1943-541x.0001123

Qian, K., & Li, B. (2016). Resilience of Flat Slab Structures in Different Phases of Progressive Collapse. ACI Structural Journal, 113(3). doi:10.14359/51688619

Fu, F. (2009). Progressive collapse analysis of high-rise building with 3-D finite element modeling method. Journal of Constructional Steel Research, 65(6), 1269-1278. doi:10.1016/j.jcsr.2009.02.001

Russell, J. M., Sagaseta, J., Cormie, D., & Jones, A. E. K. (2019). Historical review of prescriptive design rules for robustness after the collapse of Ronan Point. Structures, 20, 365-373. doi:10.1016/j.istruc.2019.04.011

GSA. General Services Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major organization projects; 2013.

DoD. Department of Defense. Design of buildings to resist progressive collapse (UFC 4-023-03); 2009.

EN 1991-1-7. Eurocode 1: Actions on structures - Part 1-7: General actions - Accidental actions; 2006.

Qian, K., Weng, Y.-H., & Li, B. (2018). Impact of two columns missing on dynamic response of RC flat slab structures. Engineering Structures, 177, 598-615. doi:10.1016/j.engstruct.2018.10.011

Ren, P., Li, Y., Lu, X., Guan, H., & Zhou, Y. (2016). Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam–slab substructures under a middle-column-removal scenario. Engineering Structures, 118, 28-40. doi:10.1016/j.engstruct.2016.03.051

Tohidi, M., & Baniotopoulos, C. (2017). Effect of floor joint design on catenary actions of precast floor slab system. Engineering Structures, 152, 274-288. doi:10.1016/j.engstruct.2017.09.017

Kang, S.-B., & Tan, K. H. (2017). Progressive Collapse Resistance of Precast Concrete Frames with Discontinuous Reinforcement in the Joint. Journal of Structural Engineering, 143(9), 04017090. doi:10.1061/(asce)st.1943-541x.0001828

Al-Salloum, Y. A., Alrubaidi, M. A., Elsanadedy, H. M., Almusallam, T. H., & Iqbal, R. A. (2018). Strengthening of precast RC beam-column connections for progressive collapse mitigation using bolted steel plates. Engineering Structures, 161, 146-160. doi:10.1016/j.engstruct.2018.02.009

Jian, H., Li, S., & Huanhuan, L. (2016). Testing and Analysis on Progressive Collapse-Resistance Behavior of RC Frame Substructures under a Side Column Removal Scenario. Journal of Performance of Constructed Facilities, 30(5), 04016022. doi:10.1061/(asce)cf.1943-5509.0000873

Qian, K., & Li, B. (2017). Dynamic and residual behavior of reinforced concrete floors following instantaneous removal of a column. Engineering Structures, 148, 175-184. doi:10.1016/j.engstruct.2017.06.059

Peng, Z., Orton, S. L., Liu, J., & Tian, Y. (2017). Experimental Study of Dynamic Progressive Collapse in Flat-Plate Buildings Subjected to Exterior Column Removal. Journal of Structural Engineering, 143(9), 04017125. doi:10.1061/(asce)st.1943-541x.0001865

Kokot, S., Anthoine, A., Negro, P., & Solomos, G. (2012). Static and dynamic analysis of a reinforced concrete flat slab frame building for progressive collapse. Engineering Structures, 40, 205-217. doi:10.1016/j.engstruct.2012.02.026

Lim, N. S., Tan, K. H., & Lee, C. K. (2017). Experimental studies of 3D RC substructures under exterior and corner column removal scenarios. Engineering Structures, 150, 409-427. doi:10.1016/j.engstruct.2017.07.041

Stathas, N., Bousias, S. N., Palios, X., Strepelias, E., & Fardis, M. N. (2018). Tests and Simple Models of RC Frame Subassemblies for Postulated Loss of Column. Journal of Structural Engineering, 144(2), 04017195. doi:10.1061/(asce)st.1943-541x.0001951

Qian, K., & Li, B. (2018). Performance of Precast Concrete Substructures with Dry Connections to Resist Progressive Collapse. Journal of Performance of Constructed Facilities, 32(2), 04018005. doi:10.1061/(asce)cf.1943-5509.0001147

Kai, Q., & Li, B. (2012). Dynamic performance of RC beam-column substructures under the scenario of the loss of a corner column—Experimental results. Engineering Structures, 42, 154-167. doi:10.1016/j.engstruct.2012.04.016

Gao, S., & Guo, L. (2015). Progressive collapse analysis of 20-storey building considering composite action of floor slab. International Journal of Steel Structures, 15(2), 447-458. doi:10.1007/s13296-015-6014-5

Feng, P., Qiang, H., Ou, X., Qin, W., & Yang, J. (2019). Progressive Collapse Resistance of GFRP-Strengthened RC Beam–Slab Subassemblages in a Corner Column–Removal Scenario. Journal of Composites for Construction, 23(1), 04018076. doi:10.1061/(asce)cc.1943-5614.0000917

Zhang, H., Shu, G., & Pan, R. (2019). Failure Mechanism of Composite Frames Under the Corner Column-Removal Scenario. Journal of Failure Analysis and Prevention, 19(3), 649-664. doi:10.1007/s11668-019-00644-8

Ma, F., Gilbert, B. P., Guan, H., Xue, H., Lu, X., & Li, Y. (2019). Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to corner column removal scenarios. Engineering Structures, 180, 728-741. doi:10.1016/j.engstruct.2018.11.043

Qian, K., & Li, B. (2013). Performance of Three-Dimensional Reinforced Concrete Beam-Column Substructures under Loss of a Corner Column Scenario. Journal of Structural Engineering, 139(4), 584-594. doi:10.1061/(asce)st.1943-541x.0000630

Pham, A. T., Lim, N. S., & Tan, K. H. (2017). Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions. Engineering Structures, 150, 520-536. doi:10.1016/j.engstruct.2017.07.060

Xiao, Y., Kunnath, S., Li, F. W., Zhao, Y. B., Lew, H. S., & Bao, Y. (2015). Collapse Test of Three-Story Half-Scale Reinforced Concrete Frame Building. ACI Structural Journal, 112(4). doi:10.14359/51687746

Zhang, L., Zhao, H., Wang, T., & Chen, Q. (2016). Parametric Analysis on Collapse-resistance Performance of Reinforced-concrete Frame with Specially Shaped Columns Under Loss of a Corner Column. The Open Construction and Building Technology Journal, 10(1), 466-480. doi:10.2174/1874836801610010466

EN 1990. Eurocode: Basis of structural design; 2002.

Russell, J. M., Owen, J. S., & Hajirasouliha, I. (2015). Experimental investigation on the dynamic response of RC flat slabs after a sudden column loss. Engineering Structures, 99, 28-41. doi:10.1016/j.engstruct.2015.04.040

EN 1992-1-1. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings; 2004.

EN 1991-1-1. Eurocode 1: Actions on structures. Part 1-1: Densities, self-weight, imposed loads for buildings; 2003.

Sasani, M., & Sagiroglu, S. (2008). Progressive Collapse Resistance of Hotel San Diego. Journal of Structural Engineering, 134(3), 478-488. doi:10.1061/(asce)0733-9445(2008)134:3(478)

Black, M. S. (1975). Ultimate Strength Study of Two-Way Concrete Slabs. Journal of the Structural Division, 101(1), 311-324. doi:10.1061/jsdeag.0003976

RANKIN, G. I. B., & LONG, A. E. (1997). ARCHING ACTION STRENGTH ENHANCEMENT IN LATER ALLY-RESTRAINED SLAB STRIPS. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 122(4), 461-467. doi:10.1680/istbu.1997.29834

ANSYS 15.0. Theory reference. ANSYS Inc. 2014.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem