- -

Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Adam, Jose M es_ES
dc.contributor.author Buitrago, Manuel es_ES
dc.contributor.author Bertolesi, Elisa es_ES
dc.contributor.author Sagaseta, Juan es_ES
dc.contributor.author Moragues, Juan J es_ES
dc.date.accessioned 2021-02-11T04:32:49Z
dc.date.available 2021-02-11T04:32:49Z
dc.date.issued 2020-05-01 es_ES
dc.identifier.issn 0141-0296 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161055
dc.description.abstract [EN] The topic of robustness and progressive collapse of structures has attracted significant attention within the field of structural engineering recently. This is reflected by the rise in the number of scientific papers published in recent years as well as efforts in reviewing and developing codes for design. Although important numerical and experimental studies have been carried out to date simulating the sudden removal of columns to reproduce the possible consequences of an extreme event, most of these studies focus on subassembly systems and internal columns. Edge and corner columns are most vulnerable to accidental events. This paper gives the results of a test carried out on a purpose-built full-scale reinforced concrete building with a specially designed corner steel column used for the sudden column removal. The test was highly instrumented, involving 38 strain gauges, 38 displacement transducers and 2 accelerometers to monitor the vertical and lateral response. The results were used to analyse the dynamic performance of the structure after the sudden column removal as well as the alternative load paths (ALPs) mobilised during the test (i.e. flexural and Vierendeel action). The test showed a clear dynamic amplification of the strains and displacements (with high peaks); dynamic amplification factors (DAFs) were obtained accordingly. The load initially carried by the removed column was redistributed through the entire building system (not just the neighbouring columns). Tests on full-scale buildings, including the one described here, can be used to compile a database to validate codes and future numerical studies. es_ES
dc.description.sponsorship This work was carried out with the support of a 2017 Leonardo Grant for Researchers and Cultural Creators from the BBVA Foundation. The authors would also like to express their gratitude to the Levantina, Ingenieria y Construccion S.L. (LIC) company for funding the construction of the building. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Engineering Structures es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Experimental study es_ES
dc.subject Extreme events es_ES
dc.subject Progressive collapse es_ES
dc.subject Robustness es_ES
dc.subject RC structures es_ES
dc.subject Corner columns es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engstruct.2020.110414 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Adam, JM.; Buitrago, M.; Bertolesi, E.; Sagaseta, J.; Moragues, JJ. (2020). Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario. Engineering Structures. 210:1-14. https://doi.org/10.1016/j.engstruct.2020.110414 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.engstruct.2020.110414 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 210 es_ES
dc.relation.pasarela S\403295 es_ES
dc.contributor.funder Fundación BBVA es_ES
dc.description.references Adam, J. M., Parisi, F., Sagaseta, J., & Lu, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 173, 122-149. doi:10.1016/j.engstruct.2018.06.082 es_ES
dc.description.references Dat, P. X., & Tan, K. H. (2015). Experimental Response of Beam-Slab Substructures Subject to Penultimate-External Column Removal. Journal of Structural Engineering, 141(7), 04014170. doi:10.1061/(asce)st.1943-541x.0001123 es_ES
dc.description.references Qian, K., & Li, B. (2016). Resilience of Flat Slab Structures in Different Phases of Progressive Collapse. ACI Structural Journal, 113(3). doi:10.14359/51688619 es_ES
dc.description.references Fu, F. (2009). Progressive collapse analysis of high-rise building with 3-D finite element modeling method. Journal of Constructional Steel Research, 65(6), 1269-1278. doi:10.1016/j.jcsr.2009.02.001 es_ES
dc.description.references Russell, J. M., Sagaseta, J., Cormie, D., & Jones, A. E. K. (2019). Historical review of prescriptive design rules for robustness after the collapse of Ronan Point. Structures, 20, 365-373. doi:10.1016/j.istruc.2019.04.011 es_ES
dc.description.references GSA. General Services Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major organization projects; 2013. es_ES
dc.description.references DoD. Department of Defense. Design of buildings to resist progressive collapse (UFC 4-023-03); 2009. es_ES
dc.description.references EN 1991-1-7. Eurocode 1: Actions on structures - Part 1-7: General actions - Accidental actions; 2006. es_ES
dc.description.references Qian, K., Weng, Y.-H., & Li, B. (2018). Impact of two columns missing on dynamic response of RC flat slab structures. Engineering Structures, 177, 598-615. doi:10.1016/j.engstruct.2018.10.011 es_ES
dc.description.references Ren, P., Li, Y., Lu, X., Guan, H., & Zhou, Y. (2016). Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam–slab substructures under a middle-column-removal scenario. Engineering Structures, 118, 28-40. doi:10.1016/j.engstruct.2016.03.051 es_ES
dc.description.references Tohidi, M., & Baniotopoulos, C. (2017). Effect of floor joint design on catenary actions of precast floor slab system. Engineering Structures, 152, 274-288. doi:10.1016/j.engstruct.2017.09.017 es_ES
dc.description.references Kang, S.-B., & Tan, K. H. (2017). Progressive Collapse Resistance of Precast Concrete Frames with Discontinuous Reinforcement in the Joint. Journal of Structural Engineering, 143(9), 04017090. doi:10.1061/(asce)st.1943-541x.0001828 es_ES
dc.description.references Al-Salloum, Y. A., Alrubaidi, M. A., Elsanadedy, H. M., Almusallam, T. H., & Iqbal, R. A. (2018). Strengthening of precast RC beam-column connections for progressive collapse mitigation using bolted steel plates. Engineering Structures, 161, 146-160. doi:10.1016/j.engstruct.2018.02.009 es_ES
dc.description.references Jian, H., Li, S., & Huanhuan, L. (2016). Testing and Analysis on Progressive Collapse-Resistance Behavior of RC Frame Substructures under a Side Column Removal Scenario. Journal of Performance of Constructed Facilities, 30(5), 04016022. doi:10.1061/(asce)cf.1943-5509.0000873 es_ES
dc.description.references Qian, K., & Li, B. (2017). Dynamic and residual behavior of reinforced concrete floors following instantaneous removal of a column. Engineering Structures, 148, 175-184. doi:10.1016/j.engstruct.2017.06.059 es_ES
dc.description.references Peng, Z., Orton, S. L., Liu, J., & Tian, Y. (2017). Experimental Study of Dynamic Progressive Collapse in Flat-Plate Buildings Subjected to Exterior Column Removal. Journal of Structural Engineering, 143(9), 04017125. doi:10.1061/(asce)st.1943-541x.0001865 es_ES
dc.description.references Kokot, S., Anthoine, A., Negro, P., & Solomos, G. (2012). Static and dynamic analysis of a reinforced concrete flat slab frame building for progressive collapse. Engineering Structures, 40, 205-217. doi:10.1016/j.engstruct.2012.02.026 es_ES
dc.description.references Lim, N. S., Tan, K. H., & Lee, C. K. (2017). Experimental studies of 3D RC substructures under exterior and corner column removal scenarios. Engineering Structures, 150, 409-427. doi:10.1016/j.engstruct.2017.07.041 es_ES
dc.description.references Stathas, N., Bousias, S. N., Palios, X., Strepelias, E., & Fardis, M. N. (2018). Tests and Simple Models of RC Frame Subassemblies for Postulated Loss of Column. Journal of Structural Engineering, 144(2), 04017195. doi:10.1061/(asce)st.1943-541x.0001951 es_ES
dc.description.references Qian, K., & Li, B. (2018). Performance of Precast Concrete Substructures with Dry Connections to Resist Progressive Collapse. Journal of Performance of Constructed Facilities, 32(2), 04018005. doi:10.1061/(asce)cf.1943-5509.0001147 es_ES
dc.description.references Kai, Q., & Li, B. (2012). Dynamic performance of RC beam-column substructures under the scenario of the loss of a corner column—Experimental results. Engineering Structures, 42, 154-167. doi:10.1016/j.engstruct.2012.04.016 es_ES
dc.description.references Gao, S., & Guo, L. (2015). Progressive collapse analysis of 20-storey building considering composite action of floor slab. International Journal of Steel Structures, 15(2), 447-458. doi:10.1007/s13296-015-6014-5 es_ES
dc.description.references Feng, P., Qiang, H., Ou, X., Qin, W., & Yang, J. (2019). Progressive Collapse Resistance of GFRP-Strengthened RC Beam–Slab Subassemblages in a Corner Column–Removal Scenario. Journal of Composites for Construction, 23(1), 04018076. doi:10.1061/(asce)cc.1943-5614.0000917 es_ES
dc.description.references Zhang, H., Shu, G., & Pan, R. (2019). Failure Mechanism of Composite Frames Under the Corner Column-Removal Scenario. Journal of Failure Analysis and Prevention, 19(3), 649-664. doi:10.1007/s11668-019-00644-8 es_ES
dc.description.references Ma, F., Gilbert, B. P., Guan, H., Xue, H., Lu, X., & Li, Y. (2019). Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to corner column removal scenarios. Engineering Structures, 180, 728-741. doi:10.1016/j.engstruct.2018.11.043 es_ES
dc.description.references Qian, K., & Li, B. (2013). Performance of Three-Dimensional Reinforced Concrete Beam-Column Substructures under Loss of a Corner Column Scenario. Journal of Structural Engineering, 139(4), 584-594. doi:10.1061/(asce)st.1943-541x.0000630 es_ES
dc.description.references Pham, A. T., Lim, N. S., & Tan, K. H. (2017). Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions. Engineering Structures, 150, 520-536. doi:10.1016/j.engstruct.2017.07.060 es_ES
dc.description.references Xiao, Y., Kunnath, S., Li, F. W., Zhao, Y. B., Lew, H. S., & Bao, Y. (2015). Collapse Test of Three-Story Half-Scale Reinforced Concrete Frame Building. ACI Structural Journal, 112(4). doi:10.14359/51687746 es_ES
dc.description.references Zhang, L., Zhao, H., Wang, T., & Chen, Q. (2016). Parametric Analysis on Collapse-resistance Performance of Reinforced-concrete Frame with Specially Shaped Columns Under Loss of a Corner Column. The Open Construction and Building Technology Journal, 10(1), 466-480. doi:10.2174/1874836801610010466 es_ES
dc.description.references EN 1990. Eurocode: Basis of structural design; 2002. es_ES
dc.description.references Russell, J. M., Owen, J. S., & Hajirasouliha, I. (2015). Experimental investigation on the dynamic response of RC flat slabs after a sudden column loss. Engineering Structures, 99, 28-41. doi:10.1016/j.engstruct.2015.04.040 es_ES
dc.description.references EN 1992-1-1. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings; 2004. es_ES
dc.description.references EN 1991-1-1. Eurocode 1: Actions on structures. Part 1-1: Densities, self-weight, imposed loads for buildings; 2003. es_ES
dc.description.references Sasani, M., & Sagiroglu, S. (2008). Progressive Collapse Resistance of Hotel San Diego. Journal of Structural Engineering, 134(3), 478-488. doi:10.1061/(asce)0733-9445(2008)134:3(478) es_ES
dc.description.references Black, M. S. (1975). Ultimate Strength Study of Two-Way Concrete Slabs. Journal of the Structural Division, 101(1), 311-324. doi:10.1061/jsdeag.0003976 es_ES
dc.description.references RANKIN, G. I. B., & LONG, A. E. (1997). ARCHING ACTION STRENGTH ENHANCEMENT IN LATER ALLY-RESTRAINED SLAB STRIPS. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 122(4), 461-467. doi:10.1680/istbu.1997.29834 es_ES
dc.description.references ANSYS 15.0. Theory reference. ANSYS Inc. 2014. es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem