Mostrar el registro sencillo del ítem
dc.contributor.author | Adam, Jose M | es_ES |
dc.contributor.author | Buitrago, Manuel | es_ES |
dc.contributor.author | Bertolesi, Elisa | es_ES |
dc.contributor.author | Sagaseta, Juan | es_ES |
dc.contributor.author | Moragues, Juan J | es_ES |
dc.date.accessioned | 2021-02-11T04:32:49Z | |
dc.date.available | 2021-02-11T04:32:49Z | |
dc.date.issued | 2020-05-01 | es_ES |
dc.identifier.issn | 0141-0296 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161055 | |
dc.description.abstract | [EN] The topic of robustness and progressive collapse of structures has attracted significant attention within the field of structural engineering recently. This is reflected by the rise in the number of scientific papers published in recent years as well as efforts in reviewing and developing codes for design. Although important numerical and experimental studies have been carried out to date simulating the sudden removal of columns to reproduce the possible consequences of an extreme event, most of these studies focus on subassembly systems and internal columns. Edge and corner columns are most vulnerable to accidental events. This paper gives the results of a test carried out on a purpose-built full-scale reinforced concrete building with a specially designed corner steel column used for the sudden column removal. The test was highly instrumented, involving 38 strain gauges, 38 displacement transducers and 2 accelerometers to monitor the vertical and lateral response. The results were used to analyse the dynamic performance of the structure after the sudden column removal as well as the alternative load paths (ALPs) mobilised during the test (i.e. flexural and Vierendeel action). The test showed a clear dynamic amplification of the strains and displacements (with high peaks); dynamic amplification factors (DAFs) were obtained accordingly. The load initially carried by the removed column was redistributed through the entire building system (not just the neighbouring columns). Tests on full-scale buildings, including the one described here, can be used to compile a database to validate codes and future numerical studies. | es_ES |
dc.description.sponsorship | This work was carried out with the support of a 2017 Leonardo Grant for Researchers and Cultural Creators from the BBVA Foundation. The authors would also like to express their gratitude to the Levantina, Ingenieria y Construccion S.L. (LIC) company for funding the construction of the building. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Engineering Structures | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Experimental study | es_ES |
dc.subject | Extreme events | es_ES |
dc.subject | Progressive collapse | es_ES |
dc.subject | Robustness | es_ES |
dc.subject | RC structures | es_ES |
dc.subject | Corner columns | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.engstruct.2020.110414 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Adam, JM.; Buitrago, M.; Bertolesi, E.; Sagaseta, J.; Moragues, JJ. (2020). Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario. Engineering Structures. 210:1-14. https://doi.org/10.1016/j.engstruct.2020.110414 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.engstruct.2020.110414 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 210 | es_ES |
dc.relation.pasarela | S\403295 | es_ES |
dc.contributor.funder | Fundación BBVA | es_ES |
dc.description.references | Adam, J. M., Parisi, F., Sagaseta, J., & Lu, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 173, 122-149. doi:10.1016/j.engstruct.2018.06.082 | es_ES |
dc.description.references | Dat, P. X., & Tan, K. H. (2015). Experimental Response of Beam-Slab Substructures Subject to Penultimate-External Column Removal. Journal of Structural Engineering, 141(7), 04014170. doi:10.1061/(asce)st.1943-541x.0001123 | es_ES |
dc.description.references | Qian, K., & Li, B. (2016). Resilience of Flat Slab Structures in Different Phases of Progressive Collapse. ACI Structural Journal, 113(3). doi:10.14359/51688619 | es_ES |
dc.description.references | Fu, F. (2009). Progressive collapse analysis of high-rise building with 3-D finite element modeling method. Journal of Constructional Steel Research, 65(6), 1269-1278. doi:10.1016/j.jcsr.2009.02.001 | es_ES |
dc.description.references | Russell, J. M., Sagaseta, J., Cormie, D., & Jones, A. E. K. (2019). Historical review of prescriptive design rules for robustness after the collapse of Ronan Point. Structures, 20, 365-373. doi:10.1016/j.istruc.2019.04.011 | es_ES |
dc.description.references | GSA. General Services Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major organization projects; 2013. | es_ES |
dc.description.references | DoD. Department of Defense. Design of buildings to resist progressive collapse (UFC 4-023-03); 2009. | es_ES |
dc.description.references | EN 1991-1-7. Eurocode 1: Actions on structures - Part 1-7: General actions - Accidental actions; 2006. | es_ES |
dc.description.references | Qian, K., Weng, Y.-H., & Li, B. (2018). Impact of two columns missing on dynamic response of RC flat slab structures. Engineering Structures, 177, 598-615. doi:10.1016/j.engstruct.2018.10.011 | es_ES |
dc.description.references | Ren, P., Li, Y., Lu, X., Guan, H., & Zhou, Y. (2016). Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam–slab substructures under a middle-column-removal scenario. Engineering Structures, 118, 28-40. doi:10.1016/j.engstruct.2016.03.051 | es_ES |
dc.description.references | Tohidi, M., & Baniotopoulos, C. (2017). Effect of floor joint design on catenary actions of precast floor slab system. Engineering Structures, 152, 274-288. doi:10.1016/j.engstruct.2017.09.017 | es_ES |
dc.description.references | Kang, S.-B., & Tan, K. H. (2017). Progressive Collapse Resistance of Precast Concrete Frames with Discontinuous Reinforcement in the Joint. Journal of Structural Engineering, 143(9), 04017090. doi:10.1061/(asce)st.1943-541x.0001828 | es_ES |
dc.description.references | Al-Salloum, Y. A., Alrubaidi, M. A., Elsanadedy, H. M., Almusallam, T. H., & Iqbal, R. A. (2018). Strengthening of precast RC beam-column connections for progressive collapse mitigation using bolted steel plates. Engineering Structures, 161, 146-160. doi:10.1016/j.engstruct.2018.02.009 | es_ES |
dc.description.references | Jian, H., Li, S., & Huanhuan, L. (2016). Testing and Analysis on Progressive Collapse-Resistance Behavior of RC Frame Substructures under a Side Column Removal Scenario. Journal of Performance of Constructed Facilities, 30(5), 04016022. doi:10.1061/(asce)cf.1943-5509.0000873 | es_ES |
dc.description.references | Qian, K., & Li, B. (2017). Dynamic and residual behavior of reinforced concrete floors following instantaneous removal of a column. Engineering Structures, 148, 175-184. doi:10.1016/j.engstruct.2017.06.059 | es_ES |
dc.description.references | Peng, Z., Orton, S. L., Liu, J., & Tian, Y. (2017). Experimental Study of Dynamic Progressive Collapse in Flat-Plate Buildings Subjected to Exterior Column Removal. Journal of Structural Engineering, 143(9), 04017125. doi:10.1061/(asce)st.1943-541x.0001865 | es_ES |
dc.description.references | Kokot, S., Anthoine, A., Negro, P., & Solomos, G. (2012). Static and dynamic analysis of a reinforced concrete flat slab frame building for progressive collapse. Engineering Structures, 40, 205-217. doi:10.1016/j.engstruct.2012.02.026 | es_ES |
dc.description.references | Lim, N. S., Tan, K. H., & Lee, C. K. (2017). Experimental studies of 3D RC substructures under exterior and corner column removal scenarios. Engineering Structures, 150, 409-427. doi:10.1016/j.engstruct.2017.07.041 | es_ES |
dc.description.references | Stathas, N., Bousias, S. N., Palios, X., Strepelias, E., & Fardis, M. N. (2018). Tests and Simple Models of RC Frame Subassemblies for Postulated Loss of Column. Journal of Structural Engineering, 144(2), 04017195. doi:10.1061/(asce)st.1943-541x.0001951 | es_ES |
dc.description.references | Qian, K., & Li, B. (2018). Performance of Precast Concrete Substructures with Dry Connections to Resist Progressive Collapse. Journal of Performance of Constructed Facilities, 32(2), 04018005. doi:10.1061/(asce)cf.1943-5509.0001147 | es_ES |
dc.description.references | Kai, Q., & Li, B. (2012). Dynamic performance of RC beam-column substructures under the scenario of the loss of a corner column—Experimental results. Engineering Structures, 42, 154-167. doi:10.1016/j.engstruct.2012.04.016 | es_ES |
dc.description.references | Gao, S., & Guo, L. (2015). Progressive collapse analysis of 20-storey building considering composite action of floor slab. International Journal of Steel Structures, 15(2), 447-458. doi:10.1007/s13296-015-6014-5 | es_ES |
dc.description.references | Feng, P., Qiang, H., Ou, X., Qin, W., & Yang, J. (2019). Progressive Collapse Resistance of GFRP-Strengthened RC Beam–Slab Subassemblages in a Corner Column–Removal Scenario. Journal of Composites for Construction, 23(1), 04018076. doi:10.1061/(asce)cc.1943-5614.0000917 | es_ES |
dc.description.references | Zhang, H., Shu, G., & Pan, R. (2019). Failure Mechanism of Composite Frames Under the Corner Column-Removal Scenario. Journal of Failure Analysis and Prevention, 19(3), 649-664. doi:10.1007/s11668-019-00644-8 | es_ES |
dc.description.references | Ma, F., Gilbert, B. P., Guan, H., Xue, H., Lu, X., & Li, Y. (2019). Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to corner column removal scenarios. Engineering Structures, 180, 728-741. doi:10.1016/j.engstruct.2018.11.043 | es_ES |
dc.description.references | Qian, K., & Li, B. (2013). Performance of Three-Dimensional Reinforced Concrete Beam-Column Substructures under Loss of a Corner Column Scenario. Journal of Structural Engineering, 139(4), 584-594. doi:10.1061/(asce)st.1943-541x.0000630 | es_ES |
dc.description.references | Pham, A. T., Lim, N. S., & Tan, K. H. (2017). Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions. Engineering Structures, 150, 520-536. doi:10.1016/j.engstruct.2017.07.060 | es_ES |
dc.description.references | Xiao, Y., Kunnath, S., Li, F. W., Zhao, Y. B., Lew, H. S., & Bao, Y. (2015). Collapse Test of Three-Story Half-Scale Reinforced Concrete Frame Building. ACI Structural Journal, 112(4). doi:10.14359/51687746 | es_ES |
dc.description.references | Zhang, L., Zhao, H., Wang, T., & Chen, Q. (2016). Parametric Analysis on Collapse-resistance Performance of Reinforced-concrete Frame with Specially Shaped Columns Under Loss of a Corner Column. The Open Construction and Building Technology Journal, 10(1), 466-480. doi:10.2174/1874836801610010466 | es_ES |
dc.description.references | EN 1990. Eurocode: Basis of structural design; 2002. | es_ES |
dc.description.references | Russell, J. M., Owen, J. S., & Hajirasouliha, I. (2015). Experimental investigation on the dynamic response of RC flat slabs after a sudden column loss. Engineering Structures, 99, 28-41. doi:10.1016/j.engstruct.2015.04.040 | es_ES |
dc.description.references | EN 1992-1-1. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings; 2004. | es_ES |
dc.description.references | EN 1991-1-1. Eurocode 1: Actions on structures. Part 1-1: Densities, self-weight, imposed loads for buildings; 2003. | es_ES |
dc.description.references | Sasani, M., & Sagiroglu, S. (2008). Progressive Collapse Resistance of Hotel San Diego. Journal of Structural Engineering, 134(3), 478-488. doi:10.1061/(asce)0733-9445(2008)134:3(478) | es_ES |
dc.description.references | Black, M. S. (1975). Ultimate Strength Study of Two-Way Concrete Slabs. Journal of the Structural Division, 101(1), 311-324. doi:10.1061/jsdeag.0003976 | es_ES |
dc.description.references | RANKIN, G. I. B., & LONG, A. E. (1997). ARCHING ACTION STRENGTH ENHANCEMENT IN LATER ALLY-RESTRAINED SLAB STRIPS. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 122(4), 461-467. doi:10.1680/istbu.1997.29834 | es_ES |
dc.description.references | ANSYS 15.0. Theory reference. ANSYS Inc. 2014. | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |