- -

Operators acting in the dual spaces of discrete Cesàro spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Operators acting in the dual spaces of discrete Cesàro spaces

Mostrar el registro completo del ítem

Bonet Solves, JA.; Ricker, W. (2020). Operators acting in the dual spaces of discrete Cesàro spaces. Monatshefte für Mathematik. 191(3):487-512. https://doi.org/10.1007/s00605-020-01370-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161155

Ficheros en el ítem

Metadatos del ítem

Título: Operators acting in the dual spaces of discrete Cesàro spaces
Autor: Bonet Solves, José Antonio RICKER, WERNER
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] The discrete Cesaro (Banach) sequence spaces ces(r),1<r<infinity, have been thoroughly investigated for over 45 years. Not so for their dual spaces d(s) approximately equal to (ces(r))', which are somewhat unwieldy. ...[+]
Palabras clave: Banach sequence space , Cesaro operator , Regular operator , Multiplier
Derechos de uso: Reserva de todos los derechos
Fuente:
Monatshefte für Mathematik. (issn: 0026-9255 )
DOI: 10.1007/s00605-020-01370-2
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00605-020-01370-2
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/
Agradecimientos:
The research of Prof. Jose Bonet was partially supported by the projects MTM 2016-76647-P and GV Prometeo 2017/102 (Spain).
Tipo: Artículo

References

Albanese, A.A., Bonet, J., Ricker, W.J.: Multiplier and averaging operators in the Banach spaces $$\text{ ces }({p}), 1 < p < \infty $$. Positivity 23, 177–193 (2019)

Arendt, W.: On the o-spectrum of regular operators and the spectrum of measures. Math. Z. 178, 271–287 (1981)

Astashkin, S.V., Maligranda, L.: Structure of Cesàro function spaces. Indag. Math. (N.S.) 20, 329–379 (2009) [+]
Albanese, A.A., Bonet, J., Ricker, W.J.: Multiplier and averaging operators in the Banach spaces $$\text{ ces }({p}), 1 < p < \infty $$. Positivity 23, 177–193 (2019)

Arendt, W.: On the o-spectrum of regular operators and the spectrum of measures. Math. Z. 178, 271–287 (1981)

Astashkin, S.V., Maligranda, L.: Structure of Cesàro function spaces. Indag. Math. (N.S.) 20, 329–379 (2009)

Astashkin, S.V., Maligranda, L.: Structure of Cesàro function spaces: a survey. In: Hudzik, H., Lewicki, G., Musielak, J., Nowak, M., Skrzypczak, L., Wisła, M. (eds.) Function Spaces X, vol. 102, pp. 13–40. Banach Center Publications, Institute of Mathematics of the Polish Academy of Sciences, Warsaw (2014)

Bachelis, G.F.: On the upper and lower majorant properties in $$ L^p (G)$$. Q. J. Math. Oxf. II Ser. 24, 119–128 (1973)

Bennett, G.: Factorizing the Classical Inequalities, vol. 576. Memoirs American Mathematical Society, Providence (1996)

Bennett, G., Grosse-Erdmann, K.-G.: Weighted Hardy inequalities for decreasing sequences and functions. Math. Ann. 334, 489–531 (2006)

Bonet, J., Ricker, W.J.: Order spectrum of the Cesàro operator in Banach lattice sequence spaces. Positivity. https://doi.org/10.1007/s11117-019-00699-9

Bourdon, P.S., Feldman, N.S., Shapiro, J.H.: Some properties of $$N$$-supercyclic operators. Stud. Math. 165, 135–157 (2004)

Bueno-Contreras, J.: The Cesàro Spaces of Dirichlet Series. Ph.D. Thesis, Instituto de Matemàticas Univ. Sevilla IMUS, Universidad de Sevilla, Spain (2018)

Bueno-Contreras, J., Curbera, G.P., Delgado, O.: The Cesàro space of Dirichlet series and its multiplier algebra. J. Math. Anal. Appl. 475, 1448–1471 (2019)

Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on the Hardy space $$ H^2 (\mathbb{D})$$. J. Math. Anal. Appl. 407, 387–397 (2013)

Curbera, G.P., Ricker, W.J.: A feature of averaging. Integral Equ. Oper. Theory 76, 447–449 (2013)

Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on $$ \ell ^p$$ and $$ c_0$$. Integral Equ. Oper. Theory 80, 61–77 (2014)

Curbera, G.P., Ricker, W.J.: The Cesàro operator and unconditional Taylor series in Hardy spaces. Integral Equ. Oper. Theory 83, 179–195 (2015)

Day, M.M.: Normed Linear Spaces, 3rd edn. Springer, Berlin (1973)

Dunford, N., Schwartz, J.T.: Linear Operators I: General Theory. Wiley Interscience Publisher Inc., New York (1964)

Grosse-Erdmann, K.-G.: The Blocking Technique, Weighted Mean Operators and Hardy’s Inequality. Lecture Notes in Mathematics, vol. 1679. Springer, Berlin (1998)

Grosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos. Springer, London (2011)

Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)

Jagers, A.A.: A note on Cesàro sequence spaces. Nieuw Arch. Wisk. 22, 113–124 (1974)

Köthe, G.: Topological Vector Spaces I. Springer, Berlin (1983)

Leibowitz, G.: Spectra of discrete Cesàro operators. Tamkang J. Math. 3, 123–132 (1972)

Leśnik, K., Maligranda, L.: Abstract Cesàro spaces. Duality. J. Math. Anal. Appl. 424, 932–951 (2015)

Lin, M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43, 337–340 (1974)

Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I and II. Springer, Berlin (1996)

Maligranda, L., Petrot, N., Suantai, S.: On the James constant and $$B$$-convexity of Cesàro and Cesàro–Orlicz sequence spaces. J. Math. Anal. Appl. 326, 312–331 (2007)

Meyer-Nieberg, P.: Banach Lattices. Springer, Berlin (1991)

Okada, S., Ricker, W.J., Sánchez-Pérez, E.A.: Optimal Domain and Integral Extension of Operators Acting in Function Spaces, Operator Theory Advances and Applications, vol. 180. Birkhäuser, Berlin (2008)

Reade, J.B.: On the spectrum of the Cesàro operator. Bull Lond. Math. Soc. 117, 263–267 (1985)

Ricker, W.J.: Convolution operators in discrete Cesàro spaces. Arch. Math. 112, 71–82 (2019)

Ricker, W.J.: The order spectrum of convolution operators in discrete Cesàro spaces. Indag. Math. (N.S.) 30, 527–535 (2019)

Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)

Schaefer, H.H.: On the o-spectrum of order bounded operators. Math. Z. 154, 79–84 (1977)

Zaanen, A.C.: Riesz Spaces II. North Holland, Amsterdam (1983)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem