- -

Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation In Vivo

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation In Vivo

Mostrar el registro completo del ítem

Minoia, S.; Carbonell, A.; Di Serio, F.; Gisel, A.; Carrinton, JC.; Navarro, B.; Flores Pedauye, R. (2014). Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation In Vivo. Journal of Virology. 88(20):11933-11945. https://doi.org/10.1128/JVI.01404-14

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161156

Ficheros en el ítem

Metadatos del ítem

Título: Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation In Vivo
Autor: MINOIA, SOFIA CARBONELL, ALBERTO Di Serio, Francesco Gisel, Andreas Carrinton, James C. Navarro, Beatriz FLORES PEDAUYE, RICARDO
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Palabras clave: RNA silencing , Virus , Argonaute
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Virology. (issn: 0022-538X )
DOI: 10.1128/JVI.01404-14
Editorial:
American Society for Microbiology
Versión del editor: https://doi.org/10.1128/JVI.01404-14
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BFU2011-28443/ES/VIROIDES: DOMINIOS ESTRUCTURALES, INICIACION DE LA TRANSCRIPCION, INTERACCION CON PROTEINAS ARGONAUTAS DEL HUESPED, Y TASAS DE MUTACION/
info:eu-repo/grantAgreement/NIH//AI043288/
info:eu-repo/grantAgreement/NSF//1231726/US/Function of Arabidopsis Small RNA-ARGONAUTE Complexes/
info:eu-repo/grantAgreement/NSF//0956526/US/Function of Arabidopsis Small RNA-ARGONAUTE Complexes/
info:eu-repo/grantAgreement/MEF//191%2F2009/
Agradecimientos:
Research in the laboratory of R. F. is currently funded by grant BFU2011-28443 from the Ministerio de Economia y Competitividad (MINECO, Spain). S.M. has been supported by a fellowship and a pre-doctoral contract from ...[+]
Tipo: Artículo

References

Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243

Tsagris, E. M., Martínez de Alba, Á. E., Gozmanova, M., & Kalantidis, K. (2008). Viroids. Cellular Microbiology, 10(11), 2168-2179. doi:10.1111/j.1462-5822.2008.01231.x

Ding, B. (2009). The Biology of Viroid-Host Interactions. Annual Review of Phytopathology, 47(1), 105-131. doi:10.1146/annurev-phyto-080508-081927 [+]
Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243

Tsagris, E. M., Martínez de Alba, Á. E., Gozmanova, M., & Kalantidis, K. (2008). Viroids. Cellular Microbiology, 10(11), 2168-2179. doi:10.1111/j.1462-5822.2008.01231.x

Ding, B. (2009). The Biology of Viroid-Host Interactions. Annual Review of Phytopathology, 47(1), 105-131. doi:10.1146/annurev-phyto-080508-081927

Diener, T. O., & Raymer, W. B. (1967). Potato Spindle Tuber Virus: A Plant Virus with Properties of a Free Nucleic Acid. Science, 158(3799), 378-381. doi:10.1126/science.158.3799.378

Gross, H. J., Domdey, H., Lossow, C., Jank, P., Raba, M., Alberty, H., & Sänger, H. L. (1978). Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature, 273(5659), 203-208. doi:10.1038/273203a0

Grill, L. K., & Semancik, J. S. (1978). RNA sequences complementary to citrus exocortis viroid in nucleic acid preparations from infected Gynura aurantiaca. Proceedings of the National Academy of Sciences, 75(2), 896-900. doi:10.1073/pnas.75.2.896

Ishikawa, M., Meshi, T., Ohno, T., Okada, Y., Sano, T., Ueda, I., & Shikata, E. (1984). A revised replication cycle for viroids: The role of longer than unit length RNA in viroid replication. Molecular and General Genetics MGG, 196(3), 421-428. doi:10.1007/bf00436189

Branch, A. D., Benenfeld, B. J., & Robertson, H. D. (1988). Evidence for a single rolling circle in the replication of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 85(23), 9128-9132. doi:10.1073/pnas.85.23.9128

Feldstein, P. A., Hu, Y., & Owens, R. A. (1998). Precisely full length, circularizable, complementary RNA: An infectious form of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 95(11), 6560-6565. doi:10.1073/pnas.95.11.6560

Daros, J.-A., & Flores, R. (2004). Arabidopsis thaliana has the enzymatic machinery for replicating representative viroid species of the family Pospiviroidae. Proceedings of the National Academy of Sciences, 101(17), 6792-6797. doi:10.1073/pnas.0401090101

MÜHLBACH, H.-P., & SÄNGER, H. L. (1979). Viroid replication is inhibited by α-amanitin. Nature, 278(5700), 185-188. doi:10.1038/278185a0

Flores, R., & Semancik, J. S. (1982). Properties of a cell-free system for synthesis of citrus exocortis viroid. Proceedings of the National Academy of Sciences, 79(20), 6285-6288. doi:10.1073/pnas.79.20.6285

Schindler, I.-M., & Mühlbach, H.-P. (1992). Involvement of nuclear DNA-dependent RNA polymerases in potato spindle tuber viroid replication: a reevaluation. Plant Science, 84(2), 221-229. doi:10.1016/0168-9452(92)90138-c

Gas, M.-E., Hernández, C., Flores, R., & Daròs, J.-A. (2007). Processing of Nuclear Viroids In Vivo: An Interplay between RNA Conformations. PLoS Pathogens, 3(11), e182. doi:10.1371/journal.ppat.0030182

Nohales, M.-A., Flores, R., & Daros, J.-A. (2012). Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proceedings of the National Academy of Sciences, 109(34), 13805-13810. doi:10.1073/pnas.1206187109

Gas, M.-E., Molina-Serrano, D., Hernández, C., Flores, R., & Daròs, J.-A. (2008). Monomeric Linear RNA of Citrus Exocortis Viroid Resulting from Processing In Vivo Has 5′-Phosphomonoester and 3′-Hydroxyl Termini: Implications for the RNase and RNA Ligase Involved in Replication. Journal of Virology, 82(20), 10321-10325. doi:10.1128/jvi.01229-08

Flores, R., Daròs, J.-A., & Hernández, C. (2000). Avsunviroidae family: Viroids containing hammerhead ribozymes. Advances in Virus Research, 271-323. doi:10.1016/s0065-3527(00)55006-4

Qi, Y., Peélissier, T., Itaya, A., Hunt, E., Wassenegger, M., & Ding, B. (2004). Direct Role of a Viroid RNA Motif in Mediating Directional RNA Trafficking across a Specific Cellular Boundary[W]. The Plant Cell, 16(7), 1741-1752. doi:10.1105/tpc.021980

Zhong, X., Tao, X., Stombaugh, J., Leontis, N., & Ding, B. (2007). Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking. The EMBO Journal, 26(16), 3836-3846. doi:10.1038/sj.emboj.7601812

Takeda, R., Petrov, A. I., Leontis, N. B., & Ding, B. (2011). A Three-Dimensional RNA Motif in Potato spindle tuber viroid Mediates Trafficking from Palisade Mesophyll to Spongy Mesophyll in Nicotiana benthamiana  . The Plant Cell, 23(1), 258-272. doi:10.1105/tpc.110.081414

Zhong, X., Archual, A. J., Amin, A. A., & Ding, B. (2008). A Genomic Map of Viroid RNA Motifs Critical for Replication and Systemic Trafficking. The Plant Cell, 20(1), 35-47. doi:10.1105/tpc.107.056606

Carthew, R. W., & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136(4), 642-655. doi:10.1016/j.cell.2009.01.035

Ding, S.-W. (2010). RNA-based antiviral immunity. Nature Reviews Immunology, 10(9), 632-644. doi:10.1038/nri2824

Axtell, M. J. (2013). Classification and Comparison of Small RNAs from Plants. Annual Review of Plant Biology, 64(1), 137-159. doi:10.1146/annurev-arplant-050312-120043

Incarbone, M., & Dunoyer, P. (2013). RNA silencing and its suppression: novel insights from in planta analyses. Trends in Plant Science, 18(7), 382-392. doi:10.1016/j.tplants.2013.04.001

Pumplin, N., & Voinnet, O. (2013). RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nature Reviews Microbiology, 11(11), 745-760. doi:10.1038/nrmicro3120

Voinnet, O. (2008). Use, tolerance and avoidance of amplified RNA silencing by plants. Trends in Plant Science, 13(7), 317-328. doi:10.1016/j.tplants.2008.05.004

Mallory, A., & Vaucheret, H. (2010). Form, Function, and Regulation of ARGONAUTE Proteins. The Plant Cell, 22(12), 3879-3889. doi:10.1105/tpc.110.080671

Bologna, N. G., & Voinnet, O. (2014). The Diversity, Biogenesis, and Activities of Endogenous Silencing Small RNAs in Arabidopsis. Annual Review of Plant Biology, 65(1), 473-503. doi:10.1146/annurev-arplant-050213-035728

Morel, J.-B., Godon, C., Mourrain, P., Béclin, C., Boutet, S., Feuerbach, F., … Vaucheret, H. (2002). Fertile Hypomorphic ARGONAUTE (ago1) Mutants Impaired in Post-Transcriptional Gene Silencing and Virus Resistance. The Plant Cell, 14(3), 629-639. doi:10.1105/tpc.010358

Baumberger, N., & Baulcombe, D. C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proceedings of the National Academy of Sciences, 102(33), 11928-11933. doi:10.1073/pnas.0505461102

Qu, F., Ye, X., & Morris, T. J. (2008). Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proceedings of the National Academy of Sciences, 105(38), 14732-14737. doi:10.1073/pnas.0805760105

Montgomery, T. A., Howell, M. D., Cuperus, J. T., Li, D., Hansen, J. E., Alexander, A. L., … Carrington, J. C. (2008). Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans-Acting siRNA Formation. Cell, 133(1), 128-141. doi:10.1016/j.cell.2008.02.033

Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., & Watanabe, Y. (2008). The Mechanism Selecting the Guide Strand from Small RNA Duplexes is Different Among Argonaute Proteins. Plant and Cell Physiology, 49(4), 493-500. doi:10.1093/pcp/pcn043

Alvarado, V. Y., & Scholthof, H. B. (2012). AGO2: A New Argonaute Compromising Plant Virus Accumulation. Frontiers in Plant Science, 2. doi:10.3389/fpls.2011.00112

Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Gilbert, K. B., Montgomery, T. A., Nguyen, T., … Carrington, J. C. (2012). Functional Analysis of Three Arabidopsis ARGONAUTES Using Slicer-Defective Mutants  . The Plant Cell, 24(9), 3613-3629. doi:10.1105/tpc.112.099945

Zilberman, D., Cao, X., & Jacobsen, S. E. (2003). ARGONAUTE4 Control of Locus-Specific siRNA Accumulation and DNA and Histone Methylation. Science, 299(5607), 716-719. doi:10.1126/science.1079695

Havecker, E. R., Wallbridge, L. M., Hardcastle, T. J., Bush, M. S., Kelly, K. A., Dunn, R. M., … Baulcombe, D. C. (2010). TheArabidopsisRNA-Directed DNA Methylation Argonautes Functionally Diverge Based on Their Expression and Interaction with Target Loci  . The Plant Cell, 22(2), 321-334. doi:10.1105/tpc.109.072199

Qi, Y., He, X., Wang, X.-J., Kohany, O., Jurka, J., & Hannon, G. J. (2006). Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature, 443(7114), 1008-1012. doi:10.1038/nature05198

Mallory, A. C., Hinze, A., Tucker, M. R., Bouché, N., Gasciolli, V., Elmayan, T., … Laux, T. (2009). Redundant and Specific Roles of the ARGONAUTE Proteins AGO1 and ZLL in Development and Small RNA-Directed Gene Silencing. PLoS Genetics, 5(9), e1000646. doi:10.1371/journal.pgen.1000646

Várallyay, É., Válóczi, A., Ágyi, Á., Burgyán, J., & Havelda, Z. (2010). Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. The EMBO Journal, 29(20), 3507-3519. doi:10.1038/emboj.2010.215

Nakasugi, K., Crowhurst, R. N., Bally, J., Wood, C. C., Hellens, R. P., & Waterhouse, P. M. (2013). De Novo Transcriptome Sequence Assembly and Analysis of RNA Silencing Genes of Nicotiana benthamiana. PLoS ONE, 8(3), e59534. doi:10.1371/journal.pone.0059534

Navarro, B., Gisel, A., Rodio, M.-E., Delgado, S., Flores, R., & Di Serio, F. (2012). Viroids: How to infect a host and cause disease without encoding proteins. Biochimie, 94(7), 1474-1480. doi:10.1016/j.biochi.2012.02.020

Hammann, C., & Steger, G. (2012). Viroid-specific small RNA in plant disease. RNA Biology, 9(6), 809-819. doi:10.4161/rna.19810

Vogt, U., Pélissier, T., Pütz, A., Razvi, F., Fischer, R., & Wassenegger, M. (2004). Viroid-induced RNA silencing of GFP-viroid fusion transgenes does not induce extensive spreading of methylation or transitive silencing. The Plant Journal, 38(1), 107-118. doi:10.1111/j.1365-313x.2004.02029.x

Itaya, A., Zhong, X., Bundschuh, R., Qi, Y., Wang, Y., Takeda, R., … Ding, B. (2007). A Structured Viroid RNA Serves as a Substrate for Dicer-Like Cleavage To Produce Biologically Active Small RNAs but Is Resistant to RNA-Induced Silencing Complex-Mediated Degradation. Journal of Virology, 81(6), 2980-2994. doi:10.1128/jvi.02339-06

Carbonell, A., Martínez de Alba, Á.-E., Flores, R., & Gago, S. (2008). Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families. Virology, 371(1), 44-53. doi:10.1016/j.virol.2007.09.031

SCHWIND, N., ZWIEBEL, M., ITAYA, A., DING, B., WANG, M.-B., KRCZAL, G., & WASSENEGGER, M. (2009). RNAi-mediated resistance toPotato spindle tuber viroidin transgenic tomato expressing a viroid hairpin RNA construct. Molecular Plant Pathology, 10(4), 459-469. doi:10.1111/j.1364-3703.2009.00546.x

Di Serio, F., Martínez de Alba, A.-E., Navarro, B., Gisel, A., & Flores, R. (2010). RNA-Dependent RNA Polymerase 6 Delays Accumulation and Precludes Meristem Invasion of a Viroid That Replicates in the Nucleus. Journal of Virology, 84(5), 2477-2489. doi:10.1128/jvi.02336-09

Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.x

Serra, P., Bani Hashemian, S. M., Fagoaga, C., Romero, J., Ruiz-Ruiz, S., Gorris, M. T., … Duran-Vila, N. (2013). Virus-Viroid Interactions: Citrus Tristeza Virus Enhances the Accumulation of Citrus Dwarfing Viroid in Mexican Lime via Virus-Encoded Silencing Suppressors. Journal of Virology, 88(2), 1394-1397. doi:10.1128/jvi.02619-13

Martinez, G., Castellano, M., Tortosa, M., Pallas, V., & Gomez, G. (2013). A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Research, 42(3), 1553-1562. doi:10.1093/nar/gkt968

Grimsley, N., Hohn, B., Hohn, T., & Walden, R. (1986). «Agroinfection,» an alternative route for viral infection of plants by using the Ti plasmid. Proceedings of the National Academy of Sciences, 83(10), 3282-3286. doi:10.1073/pnas.83.10.3282

Llave, C., Xie, Z., Kasschau, K. D., & Carrington, J. C. (2002). Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA. Science, 297(5589), 2053-2056. doi:10.1126/science.1076311

Cuperus, J. T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R. T., Takeda, A., … Carrington, J. C. (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Structural & Molecular Biology, 17(8), 997-1003. doi:10.1038/nsmb.1866

Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), R25. doi:10.1186/gb-2009-10-3-r25

Várallyay, É., & Havelda, Z. (2013). Unrelated viral suppressors of RNA silencing mediate the control of ARGONAUTE1 level. Molecular Plant Pathology, 14(6), 567-575. doi:10.1111/mpp.12029

Mallory, A. C., & Vaucheret, H. (2009). ARGONAUTE 1 homeostasis invokes the coordinate action of the microRNA and siRNA pathways. EMBO reports, 10(5), 521-526. doi:10.1038/embor.2009.32

Matoušek, J., Kozlová, P., Orctová, L., Schmitz, A., Pešina, K., Bannach, O., … Riesner, D. (2007). Accumulation of viroid-specific small RNAs and increase in nucleolytic activities linked to viroid-caused pathogenesis. Biological Chemistry, 388(1), 1-13. doi:10.1515/bc.2007.001

Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., … Qi, Y. (2008). Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide. Cell, 133(1), 116-127. doi:10.1016/j.cell.2008.02.034

Ho, T., Wang, H., Pallett, D., & Dalmay, T. (2007). Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins. FEBS Letters, 581(17), 3267-3272. doi:10.1016/j.febslet.2007.06.022

Zhang, Y., Yan, C., & Kuang, H. (2014). GC content fluctuation around plant small RNA-generating sites. FEBS Letters, 588(5), 764-769. doi:10.1016/j.febslet.2014.01.023

Qi, Y., & Ding, B. (2003). Inhibition of Cell Growth and Shoot Development by a Specific Nucleotide Sequence in a Noncoding Viroid RNA. The Plant Cell, 15(6), 1360-1374. doi:10.1105/tpc.011585

Schnölzer, M., Haas, B., Ramm, K., Hofmann, H., & Sänger, H. L. (1985). Correlation between structure and pathogenicity of potato spindle tuber viroid (PSTV). The EMBO Journal, 4(9), 2181-2190. doi:10.1002/j.1460-2075.1985.tb03913.x

Martinez de Alba, A. E., Jauvion, V., Mallory, A. C., Bouteiller, N., & Vaucheret, H. (2011). The miRNA pathway limits AGO1 availability during siRNA-mediated PTGS defense against exogenous RNA. Nucleic Acids Research, 39(21), 9339-9344. doi:10.1093/nar/gkr590

Campos, L., Granell, P., Tárraga, S., López-Gresa, P., Conejero, V., Bellés, J. M., … Lisón, P. (2014). Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiology and Biochemistry, 77, 35-43. doi:10.1016/j.plaphy.2014.01.016

Wang, M.-B., Bian, X.-Y., Wu, L.-M., Liu, L.-X., Smith, N. A., Isenegger, D., … Waterhouse, P. M. (2004). On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proceedings of the National Academy of Sciences, 101(9), 3275-3280. doi:10.1073/pnas.0400104101

Gómez, G., & Pallás, V. (2007). Mature monomeric forms of Hop stunt viroid resist RNA silencing in transgenic plants. The Plant Journal, 51(6), 1041-1049. doi:10.1111/j.1365-313x.2007.03203.x

Schuck, J., Gursinsky, T., Pantaleo, V., Burgyán, J., & Behrens, S.-E. (2013). AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system. Nucleic Acids Research, 41(9), 5090-5103. doi:10.1093/nar/gkt193

Flynt, A., Liu, N., Martin, R., & Lai, E. C. (2009). Dicing of viral replication intermediates during silencing of latent Drosophila viruses. Proceedings of the National Academy of Sciences, 106(13), 5270-5275. doi:10.1073/pnas.0813412106

Siu, R. W. C., Fragkoudis, R., Simmonds, P., Donald, C. L., Chase-Topping, M. E., Barry, G., … Kohl, A. (2011). Antiviral RNA Interference Responses Induced by Semliki Forest Virus Infection of Mosquito Cells: Characterization, Origin, and Frequency-Dependent Functions of Virus-Derived Small Interfering RNAs. Journal of Virology, 85(6), 2907-2917. doi:10.1128/jvi.02052-10

Hernandez, C., & Flores, R. (1992). Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proceedings of the National Academy of Sciences, 89(9), 3711-3715. doi:10.1073/pnas.89.9.3711

Malfitano, M., Di Serio, F., Covelli, L., Ragozzino, A., Hernández, C., & Flores, R. (2003). Peach latent mosaic viroid variants inducing peach calico (extreme chlorosis) contain a characteristic insertion that is responsible for this symptomatology. Virology, 313(2), 492-501. doi:10.1016/s0042-6822(03)00315-5

Rodio, M.-E., Delgado, S., De Stradis, A., Gómez, M.-D., Flores, R., & Di Serio, F. (2007). A Viroid RNA with a Specific Structural Motif Inhibits Chloroplast Development. The Plant Cell, 19(11), 3610-3626. doi:10.1105/tpc.106.049775

Iwakawa, H., & Tomari, Y. (2013). Molecular Insights into microRNA-Mediated Translational Repression in Plants. Molecular Cell, 52(4), 591-601. doi:10.1016/j.molcel.2013.10.033

Liu, Q., Wang, F., & Axtell, M. J. (2014). Analysis of Complementarity Requirements for Plant MicroRNA Targeting Using a Nicotiana benthamiana Quantitative Transient Assay  . The Plant Cell, 26(2), 741-753. doi:10.1105/tpc.113.120972

Shimura, H., Pantaleo, V., Ishihara, T., Myojo, N., Inaba, J., Sueda, K., … Masuta, C. (2011). A Viral Satellite RNA Induces Yellow Symptoms on Tobacco by Targeting a Gene Involved in Chlorophyll Biosynthesis using the RNA Silencing Machinery. PLoS Pathogens, 7(5), e1002021. doi:10.1371/journal.ppat.1002021

Smith, N. A., Eamens, A. L., & Wang, M.-B. (2011). Viral Small Interfering RNAs Target Host Genes to Mediate Disease Symptoms in Plants. PLoS Pathogens, 7(5), e1002022. doi:10.1371/journal.ppat.1002022

Eamens, A. L., Smith, N. A., Dennis, E. S., Wassenegger, M., & Wang, M.-B. (2014). In Nicotiana species, an artificial microRNA corresponding to the virulence modulating region of Potato spindle tuber viroid directs RNA silencing of a soluble inorganic pyrophosphatase gene and the development of abnormal phenotypes. Virology, 450-451, 266-277. doi:10.1016/j.virol.2013.12.019

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem