- -

APRICOT: Advanced Platform for Reproducible Infrastructures in the Cloud via Open Tools

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

APRICOT: Advanced Platform for Reproducible Infrastructures in the Cloud via Open Tools

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Giménez-Alventosa, Vicent es_ES
dc.contributor.author Segrelles Quilis, José Damián es_ES
dc.contributor.author Moltó, Germán es_ES
dc.contributor.author Roca-Sogorb, Mar es_ES
dc.date.accessioned 2021-02-12T04:31:10Z
dc.date.available 2021-02-12T04:31:10Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 0026-1270 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161158
dc.description.abstract [EN] Background Scientific publications are meant to exchange knowledge among researchers but the inability to properly reproduce computational experiments limits the quality of scientific research. Furthermore, bibliography shows that irreproducible preclinical research exceeds 50%, which produces a huge waste of resources on nonprofitable research at Life Sciences field. As a consequence, scientific reproducibility is being fostered to promote Open Science through open databases and software tools that are typically deployed on existing computational resources. However, some computational experiments require complex virtual infrastructures, such as elastic clusters of PCs, that can be dynamically provided from multiple clouds. Obtaining these infrastructures requires not only an infrastructure provider, but also advanced knowledge in the cloud computing field. Objectives The main aim of this paper is to improve reproducibility in life sciences to produce better and more cost-effective research. For that purpose, our intention is to simplify the infrastructure usage and deployment for researchers. Methods This paper introduces Advanced Platform for Reproducible Infrastructures in the Cloud via Open Tools (APRICOT), an open source extension for Jupyter to deploy deterministic virtual infrastructures across multiclouds for reproducible scientific computational experiments. To exemplify its utilization and how APRICOT can improve the reproduction of experiments with complex computation requirements, two examples in the field of life sciences are provided. All requirements to reproduce both experiments are disclosed within APRICOT and, therefore, can be reproduced by the users. Results To show the capabilities of APRICOT, we have processed a real magnetic resonance image to accurately characterize a prostate cancer using a Message Passing Interface cluster deployed automatically with APRICOT. In addition, the second example shows how APRICOT scales the deployed infrastructure, according to the workload, using a batch cluster. This example consists of a multiparametric study of a positron emission tomography image reconstruction. Conclusion APRICOT's benefits are the integration of specific infrastructure deployment, the management and usage for Open Science, making experiments that involve specific computational infrastructures reproducible. All the experiment steps and details can be documented at the same Jupyter notebook which includes infrastructure specifications, data storage, experimentation execution, results gathering, and infrastructure termination. Thus, distributing the experimentation notebook and needed data should be enough to reproduce the experiment. es_ES
dc.description.sponsorship This study was supported by the program "Ayudas para la contratación de personal investigador en formación de carácter predoctoral, programa VALi+d" under grant number ACIF/2018/148 from the Conselleria d'Educació of the Generalitat Valenciana and the "Fondo Social Europeo" (FSE). The authors would like to thank the Spanish "Ministerio de Economía, Industria y Competitividad" for the project "BigCLOE" with reference number TIN2016-79951-R and the European Commission, Horizon 2020 grant agreement No 826494 (PRIMAGE). The MRI prostate study case used in this article has been retrospectively collected from a project of prostate MRI biomarkers validation. es_ES
dc.language Inglés es_ES
dc.publisher Schattauer GmbH (Methods of Information in Medicine) es_ES
dc.relation.ispartof Methods of Information in Medicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Reproducible science es_ES
dc.subject Life science es_ES
dc.subject Cloud computing es_ES
dc.subject Elasticity es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title APRICOT: Advanced Platform for Reproducible Infrastructures in the Cloud via Open Tools es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1055/s-0040-1712460 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/826494/EU/PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-79951-R/ES/COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F148/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Giménez-Alventosa, V.; Segrelles Quilis, JD.; Moltó, G.; Roca-Sogorb, M. (2020). APRICOT: Advanced Platform for Reproducible Infrastructures in the Cloud via Open Tools. Methods of Information in Medicine. 59(S 02):e33-e45. https://doi.org/10.1055/s-0040-1712460 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1055/s-0040-1712460 es_ES
dc.description.upvformatpinicio e33 es_ES
dc.description.upvformatpfin e45 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.description.issue S 02 es_ES
dc.identifier.pmid 32777825 es_ES
dc.identifier.pmcid PMC7746519 es_ES
dc.relation.pasarela S\418746 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Donoho, D. L., Maleki, A., Rahman, I. U., Shahram, M., & Stodden, V. (2009). Reproducible Research in Computational Harmonic Analysis. Computing in Science & Engineering, 11(1), 8-18. doi:10.1109/mcse.2009.15 es_ES
dc.description.references Freedman, L. P., Cockburn, I. M., & Simcoe, T. S. (2015). The Economics of Reproducibility in Preclinical Research. PLOS Biology, 13(6), e1002165. doi:10.1371/journal.pbio.1002165 es_ES
dc.description.references Chillarón, M., Vidal, V., & Verdú, G. (2020). CT image reconstruction with SuiteSparseQR factorization package. Radiation Physics and Chemistry, 167, 108289. doi:10.1016/j.radphyschem.2019.04.039 es_ES
dc.description.references Reader, A. J., Ally, S., Bakatselos, F., Manavaki, R., Walledge, R. J., Jeavons, A. P., … Zweit, J. (2002). One-pass list-mode EM algorithm for high-resolution 3-D PET image reconstruction into large arrays. IEEE Transactions on Nuclear Science, 49(3), 693-699. doi:10.1109/tns.2002.1039550 es_ES
dc.description.references Giménez-Alventosa, V., Antunes, P. C. G., Vijande, J., Ballester, F., Pérez-Calatayud, J., & Andreo, P. (2016). Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy. Physics in Medicine and Biology, 62(1), 146-164. doi:10.1088/1361-6560/aa4f6a es_ES
dc.description.references Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., … Bourne, P. E. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1). doi:10.1038/sdata.2016.18 es_ES
dc.description.references Calatrava, A., Romero, E., Moltó, G., Caballer, M., & Alonso, J. M. (2016). Self-managed cost-efficient virtual elastic clusters on hybrid Cloud infrastructures. Future Generation Computer Systems, 61, 13-25. doi:10.1016/j.future.2016.01.018 es_ES
dc.description.references Caballer, M., Blanquer, I., Moltó, G., & de Alfonso, C. (2014). Dynamic Management of Virtual Infrastructures. Journal of Grid Computing, 13(1), 53-70. doi:10.1007/s10723-014-9296-5 es_ES
dc.description.references Wolstencroft, K., Owen, S., Krebs, O., Nguyen, Q., Stanford, N. J., Golebiewski, M., … Goble, C. (2015). SEEK: a systems biology data and model management platform. BMC Systems Biology, 9(1). doi:10.1186/s12918-015-0174-y es_ES
dc.description.references De Alfonso, C., Caballer, M., Calatrava, A., Moltó, G., & Blanquer, I. (2018). Multi-elastic Datacenters: Auto-scaled Virtual Clusters on Energy-Aware Physical Infrastructures. Journal of Grid Computing, 17(1), 191-204. doi:10.1007/s10723-018-9449-z es_ES
dc.description.references Rawla, P. (2019). Epidemiology of Prostate Cancer. World Journal of Oncology, 10(2), 63-89. doi:10.14740/wjon1191 es_ES
dc.description.references Bratan, F., Niaf, E., Melodelima, C., Chesnais, A. L., Souchon, R., Mège-Lechevallier, F., … Rouvière, O. (2013). Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. European Radiology, 23(7), 2019-2029. doi:10.1007/s00330-013-2795-0 es_ES
dc.description.references Le, J. D., Tan, N., Shkolyar, E., Lu, D. Y., Kwan, L., Marks, L. S., … Reiter, R. E. (2015). Multifocality and Prostate Cancer Detection by Multiparametric Magnetic Resonance Imaging: Correlation with Whole-mount Histopathology. European Urology, 67(3), 569-576. doi:10.1016/j.eururo.2014.08.079 es_ES
dc.description.references Brix, G., Semmler, W., Port, R., Schad, L. R., Layer, G., & Lorenz, W. J. (1991). Pharmacokinetic Parameters in CNS Gd-DTPA Enhanced MR Imaging. Journal of Computer Assisted Tomography, 15(4), 621-628. doi:10.1097/00004728-199107000-00018 es_ES
dc.description.references Larsson, H. B. W., Stubgaard, M., Frederiksen, J. L., Jensen, M., Henriksen, O., & Paulson, O. B. (1990). Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magnetic Resonance in Medicine, 16(1), 117-131. doi:10.1002/mrm.1910160111 es_ES
dc.description.references Tofts, P. S., & Kermode, A. G. (1991). Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magnetic Resonance in Medicine, 17(2), 357-367. doi:10.1002/mrm.1910170208 es_ES
dc.description.references Donahue, K. M., Weisskoff, R. M., & Burstein, D. (1997). Water diffusion and exchange as they influence contrast enhancement. Journal of Magnetic Resonance Imaging, 7(1), 102-110. doi:10.1002/jmri.1880070114 es_ES
dc.description.references Flouri, D., Lesnic, D., & Sourbron, S. P. (2015). Fitting the two-compartment model in DCE-MRI by linear inversion. Magnetic Resonance in Medicine, 76(3), 998-1006. doi:10.1002/mrm.25991 es_ES
dc.description.references Brun, R., & Rademakers, F. (1997). ROOT — An object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 389(1-2), 81-86. doi:10.1016/s0168-9002(97)00048-x es_ES
dc.description.references Xuan Liu, Comtat, C., Michel, C., Kinahan, P., Defrise, M., & Townsend, D. (2001). Comparison of 3-D reconstruction with 3D-OSEM and with FORE+OSEM for PET. IEEE Transactions on Medical Imaging, 20(8), 804-814. doi:10.1109/42.938248 es_ES
dc.description.references Singh, S., Kalra, M. K., Hsieh, J., Licato, P. E., Do, S., Pien, H. H., & Blake, M. A. (2010). Abdominal CT: Comparison of Adaptive Statistical Iterative and Filtered Back Projection Reconstruction Techniques. Radiology, 257(2), 373-383. doi:10.1148/radiol.10092212 es_ES
dc.description.references Shepp, L. A., & Vardi, Y. (1982). Maximum Likelihood Reconstruction for Emission Tomography. IEEE Transactions on Medical Imaging, 1(2), 113-122. doi:10.1109/tmi.1982.4307558 es_ES
dc.description.references Goo, J. M., Tongdee, T., Tongdee, R., Yeo, K., Hildebolt, C. F., & Bae, K. T. (2005). Volumetric Measurement of Synthetic Lung Nodules with Multi–Detector Row CT: Effect of Various Image Reconstruction Parameters and Segmentation Thresholds on Measurement Accuracy. Radiology, 235(3), 850-856. doi:10.1148/radiol.2353040737 es_ES
dc.description.references Ravenel, J. G., Leue, W. M., Nietert, P. J., Miller, J. V., Taylor, K. K., & Silvestri, G. A. (2008). Pulmonary Nodule Volume: Effects of Reconstruction Parameters on Automated Measurements—A Phantom Study. Radiology, 247(2), 400-408. doi:10.1148/radiol.2472070868 es_ES
dc.description.references Hu, Y.-H., Zhao, B., & Zhao, W. (2008). Image artifacts in digital breast tomosynthesis: Investigation of the effects of system geometry and reconstruction parameters using a linear system approach. Medical Physics, 35(12), 5242-5252. doi:10.1118/1.2996110 es_ES
dc.description.references Lyra, M., & Ploussi, A. (2011). Filtering in SPECT Image Reconstruction. International Journal of Biomedical Imaging, 2011, 1-14. doi:10.1155/2011/693795 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem