- -

APRICOT: Advanced Platform for Reproducible Infrastructures in the Cloud via Open Tools

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

APRICOT: Advanced Platform for Reproducible Infrastructures in the Cloud via Open Tools

Mostrar el registro completo del ítem

Giménez-Alventosa, V.; Segrelles Quilis, JD.; Moltó, G.; Roca-Sogorb, M. (2020). APRICOT: Advanced Platform for Reproducible Infrastructures in the Cloud via Open Tools. Methods of Information in Medicine. 59(S 02):e33-e45. https://doi.org/10.1055/s-0040-1712460

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161158

Ficheros en el ítem

Metadatos del ítem

Título: APRICOT: Advanced Platform for Reproducible Infrastructures in the Cloud via Open Tools
Autor: Giménez-Alventosa, Vicent Segrelles Quilis, José Damián Moltó, Germán Roca-Sogorb, Mar
Entidad UPV: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Background Scientific publications are meant to exchange knowledge among researchers but the inability to properly reproduce computational experiments limits the quality of scientific research. Furthermore, bibliography ...[+]
Palabras clave: Reproducible science , Life science , Cloud computing , Elasticity
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Methods of Information in Medicine. (issn: 0026-1270 )
DOI: 10.1055/s-0040-1712460
Editorial:
Schattauer GmbH (Methods of Information in Medicine)
Versión del editor: https://doi.org/10.1055/s-0040-1712460
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/826494/EU/PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers/
info:eu-repo/grantAgreement/MINECO//TIN2016-79951-R/ES/COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/
info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F148/
Agradecimientos:
This study was supported by the program "Ayudas para la contratación de personal investigador en formación de carácter predoctoral, programa VALi+d" under grant number ACIF/2018/148 from the Conselleria d'Educació of the ...[+]
Tipo: Artículo

References

Donoho, D. L., Maleki, A., Rahman, I. U., Shahram, M., & Stodden, V. (2009). Reproducible Research in Computational Harmonic Analysis. Computing in Science & Engineering, 11(1), 8-18. doi:10.1109/mcse.2009.15

Freedman, L. P., Cockburn, I. M., & Simcoe, T. S. (2015). The Economics of Reproducibility in Preclinical Research. PLOS Biology, 13(6), e1002165. doi:10.1371/journal.pbio.1002165

Chillarón, M., Vidal, V., & Verdú, G. (2020). CT image reconstruction with SuiteSparseQR factorization package. Radiation Physics and Chemistry, 167, 108289. doi:10.1016/j.radphyschem.2019.04.039 [+]
Donoho, D. L., Maleki, A., Rahman, I. U., Shahram, M., & Stodden, V. (2009). Reproducible Research in Computational Harmonic Analysis. Computing in Science & Engineering, 11(1), 8-18. doi:10.1109/mcse.2009.15

Freedman, L. P., Cockburn, I. M., & Simcoe, T. S. (2015). The Economics of Reproducibility in Preclinical Research. PLOS Biology, 13(6), e1002165. doi:10.1371/journal.pbio.1002165

Chillarón, M., Vidal, V., & Verdú, G. (2020). CT image reconstruction with SuiteSparseQR factorization package. Radiation Physics and Chemistry, 167, 108289. doi:10.1016/j.radphyschem.2019.04.039

Reader, A. J., Ally, S., Bakatselos, F., Manavaki, R., Walledge, R. J., Jeavons, A. P., … Zweit, J. (2002). One-pass list-mode EM algorithm for high-resolution 3-D PET image reconstruction into large arrays. IEEE Transactions on Nuclear Science, 49(3), 693-699. doi:10.1109/tns.2002.1039550

Giménez-Alventosa, V., Antunes, P. C. G., Vijande, J., Ballester, F., Pérez-Calatayud, J., & Andreo, P. (2016). Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy. Physics in Medicine and Biology, 62(1), 146-164. doi:10.1088/1361-6560/aa4f6a

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., … Bourne, P. E. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1). doi:10.1038/sdata.2016.18

Calatrava, A., Romero, E., Moltó, G., Caballer, M., & Alonso, J. M. (2016). Self-managed cost-efficient virtual elastic clusters on hybrid Cloud infrastructures. Future Generation Computer Systems, 61, 13-25. doi:10.1016/j.future.2016.01.018

Caballer, M., Blanquer, I., Moltó, G., & de Alfonso, C. (2014). Dynamic Management of Virtual Infrastructures. Journal of Grid Computing, 13(1), 53-70. doi:10.1007/s10723-014-9296-5

Wolstencroft, K., Owen, S., Krebs, O., Nguyen, Q., Stanford, N. J., Golebiewski, M., … Goble, C. (2015). SEEK: a systems biology data and model management platform. BMC Systems Biology, 9(1). doi:10.1186/s12918-015-0174-y

De Alfonso, C., Caballer, M., Calatrava, A., Moltó, G., & Blanquer, I. (2018). Multi-elastic Datacenters: Auto-scaled Virtual Clusters on Energy-Aware Physical Infrastructures. Journal of Grid Computing, 17(1), 191-204. doi:10.1007/s10723-018-9449-z

Rawla, P. (2019). Epidemiology of Prostate Cancer. World Journal of Oncology, 10(2), 63-89. doi:10.14740/wjon1191

Bratan, F., Niaf, E., Melodelima, C., Chesnais, A. L., Souchon, R., Mège-Lechevallier, F., … Rouvière, O. (2013). Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. European Radiology, 23(7), 2019-2029. doi:10.1007/s00330-013-2795-0

Le, J. D., Tan, N., Shkolyar, E., Lu, D. Y., Kwan, L., Marks, L. S., … Reiter, R. E. (2015). Multifocality and Prostate Cancer Detection by Multiparametric Magnetic Resonance Imaging: Correlation with Whole-mount Histopathology. European Urology, 67(3), 569-576. doi:10.1016/j.eururo.2014.08.079

Brix, G., Semmler, W., Port, R., Schad, L. R., Layer, G., & Lorenz, W. J. (1991). Pharmacokinetic Parameters in CNS Gd-DTPA Enhanced MR Imaging. Journal of Computer Assisted Tomography, 15(4), 621-628. doi:10.1097/00004728-199107000-00018

Larsson, H. B. W., Stubgaard, M., Frederiksen, J. L., Jensen, M., Henriksen, O., & Paulson, O. B. (1990). Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magnetic Resonance in Medicine, 16(1), 117-131. doi:10.1002/mrm.1910160111

Tofts, P. S., & Kermode, A. G. (1991). Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magnetic Resonance in Medicine, 17(2), 357-367. doi:10.1002/mrm.1910170208

Donahue, K. M., Weisskoff, R. M., & Burstein, D. (1997). Water diffusion and exchange as they influence contrast enhancement. Journal of Magnetic Resonance Imaging, 7(1), 102-110. doi:10.1002/jmri.1880070114

Flouri, D., Lesnic, D., & Sourbron, S. P. (2015). Fitting the two-compartment model in DCE-MRI by linear inversion. Magnetic Resonance in Medicine, 76(3), 998-1006. doi:10.1002/mrm.25991

Brun, R., & Rademakers, F. (1997). ROOT — An object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 389(1-2), 81-86. doi:10.1016/s0168-9002(97)00048-x

Xuan Liu, Comtat, C., Michel, C., Kinahan, P., Defrise, M., & Townsend, D. (2001). Comparison of 3-D reconstruction with 3D-OSEM and with FORE+OSEM for PET. IEEE Transactions on Medical Imaging, 20(8), 804-814. doi:10.1109/42.938248

Singh, S., Kalra, M. K., Hsieh, J., Licato, P. E., Do, S., Pien, H. H., & Blake, M. A. (2010). Abdominal CT: Comparison of Adaptive Statistical Iterative and Filtered Back Projection Reconstruction Techniques. Radiology, 257(2), 373-383. doi:10.1148/radiol.10092212

Shepp, L. A., & Vardi, Y. (1982). Maximum Likelihood Reconstruction for Emission Tomography. IEEE Transactions on Medical Imaging, 1(2), 113-122. doi:10.1109/tmi.1982.4307558

Goo, J. M., Tongdee, T., Tongdee, R., Yeo, K., Hildebolt, C. F., & Bae, K. T. (2005). Volumetric Measurement of Synthetic Lung Nodules with Multi–Detector Row CT: Effect of Various Image Reconstruction Parameters and Segmentation Thresholds on Measurement Accuracy. Radiology, 235(3), 850-856. doi:10.1148/radiol.2353040737

Ravenel, J. G., Leue, W. M., Nietert, P. J., Miller, J. V., Taylor, K. K., & Silvestri, G. A. (2008). Pulmonary Nodule Volume: Effects of Reconstruction Parameters on Automated Measurements—A Phantom Study. Radiology, 247(2), 400-408. doi:10.1148/radiol.2472070868

Hu, Y.-H., Zhao, B., & Zhao, W. (2008). Image artifacts in digital breast tomosynthesis: Investigation of the effects of system geometry and reconstruction parameters using a linear system approach. Medical Physics, 35(12), 5242-5252. doi:10.1118/1.2996110

Lyra, M., & Ploussi, A. (2011). Filtering in SPECT Image Reconstruction. International Journal of Biomedical Imaging, 2011, 1-14. doi:10.1155/2011/693795

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem