- -

Localization and separation of solutions for Fredholm integral equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Localization and separation of solutions for Fredholm integral equations

Mostrar el registro completo del ítem

Hernández-Verón, MA.; Ibañez, M.; Martínez Molada, E.; Singh, S. (2020). Localization and separation of solutions for Fredholm integral equations. Journal of Mathematical Analysis and Applications. 487(2):1-16. https://doi.org/10.1016/j.jmaa.2020.124008

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161160

Ficheros en el ítem

Metadatos del ítem

Título: Localization and separation of solutions for Fredholm integral equations
Autor: Hernández-Verón, Miguel Angel IBAÑEZ, MARIA Martínez Molada, Eulalia Singh, Sukhjit
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this paper, we establish a qualitative study of nonlinear Fredholm integral equations, where we will carry out a study on the localization and separation of solutions. Moreover, we consider an efficient algorithm ...[+]
Palabras clave: Fredholm integral equation , Two-steps Newton iterative scheme , Domain of existence of solution , Domain of uniqueness of solution , Lipschitz condition
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Mathematical Analysis and Applications. (issn: 0022-247X )
DOI: 10.1016/j.jmaa.2020.124008
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jmaa.2020.124008
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C21/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Agradecimientos:
This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C21-C22.
Tipo: Artículo

References

Hernández-Verón, M. A., Martínez, E., & Teruel, C. (2016). Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems. Numerical Algorithms, 76(2), 309-331. doi:10.1007/s11075-016-0255-z

Nadir, M., & Khirani, A. (2016). Adapted Newton-Kantorovich Methods for Nonlinear Integral Equations. Journal of Mathematics and Statistics, 12(3), 176-181. doi:10.3844/jmssp.2016.176.181

PARHI, S. K., & GUPTA, D. K. (2010). SEMILOCAL CONVERGENCE OF A STIRLING-LIKE METHOD IN BANACH SPACES. International Journal of Computational Methods, 07(02), 215-228. doi:10.1142/s0219876210002210 [+]
Hernández-Verón, M. A., Martínez, E., & Teruel, C. (2016). Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems. Numerical Algorithms, 76(2), 309-331. doi:10.1007/s11075-016-0255-z

Nadir, M., & Khirani, A. (2016). Adapted Newton-Kantorovich Methods for Nonlinear Integral Equations. Journal of Mathematics and Statistics, 12(3), 176-181. doi:10.3844/jmssp.2016.176.181

PARHI, S. K., & GUPTA, D. K. (2010). SEMILOCAL CONVERGENCE OF A STIRLING-LIKE METHOD IN BANACH SPACES. International Journal of Computational Methods, 07(02), 215-228. doi:10.1142/s0219876210002210

Parhi, S. K., & Gupta, D. K. (2011). Convergence of a third order method for fixed points in Banach spaces. Numerical Algorithms, 60(3), 419-434. doi:10.1007/s11075-011-9521-2

Singh, S., Gupta, D. K., Martínez, E., & Hueso, J. L. (2016). Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces. Mediterranean Journal of Mathematics, 13(6), 4219-4235. doi:10.1007/s00009-016-0741-5

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem