Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández-Verón, Miguel Angel | es_ES |
dc.contributor.author | IBAÑEZ, MARIA | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.contributor.author | Singh, Sukhjit | es_ES |
dc.date.accessioned | 2021-02-12T04:31:14Z | |
dc.date.available | 2021-02-12T04:31:14Z | |
dc.date.issued | 2020-07-15 | es_ES |
dc.identifier.issn | 0022-247X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161160 | |
dc.description.abstract | [EN] In this paper, we establish a qualitative study of nonlinear Fredholm integral equations, where we will carry out a study on the localization and separation of solutions. Moreover, we consider an efficient algorithm to approximate a solution. To do this, we study the semilocal convergence of an efficient third order iterative scheme for solving nonlinear Fredholm integral equations under mild conditions. The novelty of our work lies in the fact that this study involves first order Frechet derivative and mild conditions. A numerical example involving nonlinear Fredholm integral equations, is solved to show the domains of existence and uniqueness of solutions. The applicability of the iterative scheme considered is also shown. (C) 2020 Elsevier Inc. All rights reserved. | es_ES |
dc.description.sponsorship | This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C21-C22. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Fredholm integral equation | es_ES |
dc.subject | Two-steps Newton iterative scheme | es_ES |
dc.subject | Domain of existence of solution | es_ES |
dc.subject | Domain of uniqueness of solution | es_ES |
dc.subject | Lipschitz condition | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Localization and separation of solutions for Fredholm integral equations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jmaa.2020.124008 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C21/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Hernández-Verón, MA.; Ibañez, M.; Martínez Molada, E.; Singh, S. (2020). Localization and separation of solutions for Fredholm integral equations. Journal of Mathematical Analysis and Applications. 487(2):1-16. https://doi.org/10.1016/j.jmaa.2020.124008 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jmaa.2020.124008 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 487 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\406776 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Hernández-Verón, M. A., Martínez, E., & Teruel, C. (2016). Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems. Numerical Algorithms, 76(2), 309-331. doi:10.1007/s11075-016-0255-z | es_ES |
dc.description.references | Nadir, M., & Khirani, A. (2016). Adapted Newton-Kantorovich Methods for Nonlinear Integral Equations. Journal of Mathematics and Statistics, 12(3), 176-181. doi:10.3844/jmssp.2016.176.181 | es_ES |
dc.description.references | PARHI, S. K., & GUPTA, D. K. (2010). SEMILOCAL CONVERGENCE OF A STIRLING-LIKE METHOD IN BANACH SPACES. International Journal of Computational Methods, 07(02), 215-228. doi:10.1142/s0219876210002210 | es_ES |
dc.description.references | Parhi, S. K., & Gupta, D. K. (2011). Convergence of a third order method for fixed points in Banach spaces. Numerical Algorithms, 60(3), 419-434. doi:10.1007/s11075-011-9521-2 | es_ES |
dc.description.references | Singh, S., Gupta, D. K., Martínez, E., & Hueso, J. L. (2016). Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces. Mediterranean Journal of Mathematics, 13(6), 4219-4235. doi:10.1007/s00009-016-0741-5 | es_ES |