- -

Virus variants with differences in the P1 protein coexist in a Plum pox virus population and display particular host-dependent pathogenicity features

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Virus variants with differences in the P1 protein coexist in a Plum pox virus population and display particular host-dependent pathogenicity features

Mostrar el registro completo del ítem

Maliogka, VI.; Salvador, B.; Carbonell, A.; Saenz, P.; San Leon, D.; Oliveros, JC.; Delgadillo, MO.... (2012). Virus variants with differences in the P1 protein coexist in a Plum pox virus population and display particular host-dependent pathogenicity features. Molecular Plant Pathology. 13(8):877-886. https://doi.org/10.1111/j.1364-3703.2012.00796.x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161162

Ficheros en el ítem

Metadatos del ítem

Título: Virus variants with differences in the P1 protein coexist in a Plum pox virus population and display particular host-dependent pathogenicity features
Autor: Maliogka, Varvara I. Salvador, Beatriz CARBONELL, ALBERTO Saenz, Pilar San Leon, David Oliveros, Juan Carlos Delgadillo, Ma Otilia García, Juan Antonio Simon-Mateo, Carmen
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Subisolates segregated from an M-type Plum pox virus (PPV) isolate, PPV-PS, differ widely in pathogenicity despite their high degree of sequence similarity. A single amino acid substitution, K109E, in the helper ...[+]
Palabras clave: Ppv , P1 , Plum pox virus
Derechos de uso: Reserva de todos los derechos
Fuente:
Molecular Plant Pathology. (issn: 1464-6722 )
DOI: 10.1111/j.1364-3703.2012.00796.x
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/j.1364-3703.2012.00796.x
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BIO2010-18541/ES/FACTORES DE LA INTERACCION PLANTA-VIRUS RELEVANTES PARA EL CONTROL DEL VIRUS DE LA SHARKA Y PARA SU USO COMO HERRAMIENTA BIOTECNOLOGICA/
info:eu-repo/grantAgreement/EC/FP7/204429/EU/Sharka Containment/
info:eu-repo/grantAgreement/CAM//SAL%2F0185%2F2006/
Agradecimientos:
We wish to thank Elvira Dominguez for technical assistance. This work was supported by grants BIO2010-18541 from the Spanish Ministerio de Educacion y Ciencia (MEC), SAL/0185/2006 from Comunidad de Madrid and KBBE-204429 ...[+]
Tipo: Artículo

References

Adams, M. J., Antoniw, J. F., & Fauquet, C. M. (2004). Molecular criteria for genus and species discrimination within the family Potyviridae. Archives of Virology, 150(3), 459-479. doi:10.1007/s00705-004-0440-6

Ayme, V., Petit-Pierre, J., Souche, S., Palloix, A., & Moury, B. (2007). Molecular dissection of the potato virus Y VPg virulence factor reveals complex adaptations to the pvr2 resistance allelic series in pepper. Journal of General Virology, 88(5), 1594-1601. doi:10.1099/vir.0.82702-0

Biebricher, C. K., & Eigen, M. (s. f.). What Is a Quasispecies? Quasispecies: Concept and Implications for Virology, 1-31. doi:10.1007/3-540-26397-7_1 [+]
Adams, M. J., Antoniw, J. F., & Fauquet, C. M. (2004). Molecular criteria for genus and species discrimination within the family Potyviridae. Archives of Virology, 150(3), 459-479. doi:10.1007/s00705-004-0440-6

Ayme, V., Petit-Pierre, J., Souche, S., Palloix, A., & Moury, B. (2007). Molecular dissection of the potato virus Y VPg virulence factor reveals complex adaptations to the pvr2 resistance allelic series in pepper. Journal of General Virology, 88(5), 1594-1601. doi:10.1099/vir.0.82702-0

Biebricher, C. K., & Eigen, M. (s. f.). What Is a Quasispecies? Quasispecies: Concept and Implications for Virology, 1-31. doi:10.1007/3-540-26397-7_1

Brantley, J. D., & Hunt, A. G. (1993). The N-terminal protein of the polyprotein encoded by the potyvirus tobacco vein mottling virus is an RNA-binding protein. Journal of General Virology, 74(6), 1157-1162. doi:10.1099/0022-1317-74-6-1157

Charron, C., Nicolaï, M., Gallois, J.-L., Robaglia, C., Moury, B., Palloix, A., & Caranta, C. (2008). Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. The Plant Journal, 54(1), 56-68. doi:10.1111/j.1365-313x.2008.03407.x

Chiang, C.-H., Lee, C.-Y., Wang, C.-H., Jan, F.-J., Lin, S.-S., Chen, T.-C., … Yeh, S.-D. (2007). Genetic analysis of an attenuated Papaya ringspot virus strain applied for cross-protection. European Journal of Plant Pathology, 118(4), 333-348. doi:10.1007/s10658-007-9130-z

Chung, B. Y.-W., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences, 105(15), 5897-5902. doi:10.1073/pnas.0800468105

Domingo, E., & Holland, J. J. (1997). RNA VIRUS MUTATIONS AND FITNESS FOR SURVIVAL. Annual Review of Microbiology, 51(1), 151-178. doi:10.1146/annurev.micro.51.1.151

EIGEN, M. (1996). On the nature of virus quasispecies. Trends in Microbiology, 4(6), 216-218. doi:10.1016/0966-842x(96)20011-3

Hajimorad, M. R., Wen, R.-H., Eggenberger, A. L., Hill, J. H., & Maroof, M. A. S. (2011). Experimental Adaptation of an RNA Virus Mimics Natural Evolution. Journal of Virology, 85(6), 2557-2564. doi:10.1128/jvi.01935-10

Holmes, E. C., & Moya, A. (2002). Is the Quasispecies Concept Relevant to RNA Viruses? Journal of Virology, 76(1), 460-462. doi:10.1128/jvi.76.1.460-462.2002

Jenkins, G. M., Worobey, M., Woelk, C. H., & Holmes, E. C. (2001). Evidence for the Non-quasispecies Evolution of RNA Viruses. Molecular Biology and Evolution, 18(6), 987-994. doi:10.1093/oxfordjournals.molbev.a003900

Jridi, C., Martin, J.-F., Marie-Jeanne, V., Labonne, G., & Blanc, S. (2006). Distinct Viral Populations Differentiate and Evolve Independently in a Single Perennial Host Plant. Journal of Virology, 80(5), 2349-2357. doi:10.1128/jvi.80.5.2349-2357.2006

Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 26(5), 589-595. doi:10.1093/bioinformatics/btp698

López-Moya, J. J., & Garcı́a, J. A. (2000). Construction of a stable and highly infectious intron-containing cDNA clone of plum pox potyvirus and its use to infect plants by particle bombardment. Virus Research, 68(2), 99-107. doi:10.1016/s0168-1702(00)00161-1

Moxon, S., Schwach, F., Dalmay, T., MacLean, D., Studholme, D. J., & Moulton, V. (2008). A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics, 24(19), 2252-2253. doi:10.1093/bioinformatics/btn428

Nakahara, K. S., Shimada, R., Choi, S.-H., Yamamoto, H., Shao, J., & Uyeda, I. (2010). Involvement of the P1 Cistron in Overcoming eIF4E-Mediated Recessive Resistance Against Clover yellow vein virus in Pea. Molecular Plant-Microbe Interactions®, 23(11), 1460-1469. doi:10.1094/mpmi-11-09-0277

Ohshima, K., Akaishi, S., Kajiyama, H., Koga, R., & Gibbs, A. J. (2009). Evolutionary trajectory of turnip mosaic virus populations adapting to a new host. Journal of General Virology, 91(3), 788-801. doi:10.1099/vir.0.016055-0

Pruss, G., Ge, X., Shi, X. M., Carrington, J. C., & Bowman Vance, V. (1997). Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. The Plant Cell, 9(6), 859-868. doi:10.1105/tpc.9.6.859

Rajamäki, M.-L., Kelloniemi, J., Alminaite, A., Kekarainen, T., Rabenstein, F., & Valkonen, J. P. T. (2005). A novel insertion site inside the potyvirus P1 cistron allows expression of heterologous proteins and suggests some P1 functions. Virology, 342(1), 88-101. doi:10.1016/j.virol.2005.07.019

Rohožková, J., & Navrátil, M. (2011). P1 peptidase – a mysterious protein of family Potyviridae. Journal of Biosciences, 36(1), 189-200. doi:10.1007/s12038-011-9020-6

Sáenz, P., Riechmann, J. L., Dallot, S., Quiot, L., Garcı́a, J. A., Cervera, M. T., & Quiot, J.-B. (2000). Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3+6K1. Journal of General Virology, 81(3), 557-566. doi:10.1099/0022-1317-81-3-557

Sáenz, P., Quiot, L., Quiot, J.-B., Candresse, T., & García, J. A. (2001). Pathogenicity Determinants in the Complex Virus Population of a Plum pox virus Isolate. Molecular Plant-Microbe Interactions®, 14(3), 278-287. doi:10.1094/mpmi.2001.14.3.278

Salvador, B., García, J. A., & Simón-Mateo, C. (2006). Causal agent of sharka disease: Plum pox virus genome and function of gene products. EPPO Bulletin, 36(2), 229-238. doi:10.1111/j.1365-2338.2006.00979.x

Salvador, B., Delgadillo, M. O., Sáenz, P., García, J. A., & Simón-Mateo, C. (2008). Identification of Plum pox virus Pathogenicity Determinants in Herbaceous and Woody Hosts. Molecular Plant-Microbe Interactions®, 21(1), 20-29. doi:10.1094/mpmi-21-1-0020

SALVADOR, B., SAÉNZ, P., YANGÜEZ, E., QUIOT, J. B., QUIOT, L., DELGADILLO, M. O., … SIMÓN-MATEO, C. (2008). Host-specific effect of P1 exchange between two potyviruses. Molecular Plant Pathology, 9(2), 147-155. doi:10.1111/j.1364-3703.2007.00450.x

Soumounou, Y., & Laliberte, J.-F. (1994). Nucleic acid-binding properties of the P1 protein of turnip mosaic potyvirus produced in Escherichia coli. Journal of General Virology, 75(10), 2567-2573. doi:10.1099/0022-1317-75-10-2567

Suehiro, N., Natsuaki, T., Watanabe, T., & Okuda, S. (2004). An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. Journal of General Virology, 85(7), 2087-2098. doi:10.1099/vir.0.79825-0

Valli, A., Martín-Hernández, A. M., López-Moya, J. J., & García, J. A. (2006). RNA Silencing Suppression by a Second Copy of the P1 Serine Protease ofCucumber Vein Yellowing Ipomovirus, a Member of the FamilyPotyviridaeThat Lacks the Cysteine Protease HCPro. Journal of Virology, 80(20), 10055-10063. doi:10.1128/jvi.00985-06

Valli, A., López-Moya, J. J., & García, J. A. (2007). Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. Journal of General Virology, 88(3), 1016-1028. doi:10.1099/vir.0.82402-0

Vancanneyt, G., Schmidt, R., O’Connor-Sanchez, A., Willmitzer, L., & Rocha-Sosa, M. (1990). Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Molecular and General Genetics MGG, 220(2), 245-250. doi:10.1007/bf00260489

Verchot, J., & Carrington, J. C. (1995). Debilitation of plant potyvirus infectivity by P1 proteinase-inactivating mutations and restoration by second-site modifications. Journal of Virology, 69(3), 1582-1590. doi:10.1128/jvi.69.3.1582-1590.1995

Verchot, J., & Carrington, J. C. (1995). Evidence that the potyvirus P1 proteinase functions in trans as an accessory factor for genome amplification. Journal of Virology, 69(6), 3668-3674. doi:10.1128/jvi.69.6.3668-3674.1995

Verchot, J., Koonin, E. V., & Carrington, J. C. (1991). The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology, 185(2), 527-535. doi:10.1016/0042-6822(91)90522-d

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem