- -

Enhancing the nutritional profile and digestibility of lentil flour by solid state fermentation with Pleurotus ostreatus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhancing the nutritional profile and digestibility of lentil flour by solid state fermentation with Pleurotus ostreatus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Asensio-Grau, Andrea es_ES
dc.contributor.author Calvo-Lerma, Joaquim es_ES
dc.contributor.author Heredia Gutiérrez, Ana Belén es_ES
dc.contributor.author Andrés Grau, Ana María es_ES
dc.date.accessioned 2021-02-13T04:31:31Z
dc.date.available 2021-02-13T04:31:31Z
dc.date.issued 2020-09-01 es_ES
dc.identifier.issn 2042-6496 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161195
dc.description.abstract [EN] Lentils (Lens culinaris) present an excellent nutrient profile. However, the increasing displacement of legumes from the diet and the possible negative effects of the food matrix and antinutrient factors encourage the application of new strategies to improve nutrient digestibility and to produce food concepts that contribute to the increase of legume consumption. This study approached the solid-state fermentation of lentils with an edible fungus (Pleurotus ostreatus) in order to produce improved lentil flour. Fermentation contributed to the increase of protein (23%), resistant starch (9.8%), and polyphenols (from 2.1 to 3.2 mg gallic acid equivalent per g dry matter). After simulatingin vitrodigestion, fermented flours presented a higher fraction of digested protein (17%) along with lower starch hydrolysis (34vs.24%), while the polyphenol content increased from 3.1 to 7.73 mg gallic acid equivalent per g dry matter. Thus, this study supports the application of solid-state fermentation with this edible fungus to obtain lentil flours with an enhanced digestibility profile as compared to non-fermented counterparts. Lentil flours could be used as a novel raw material in the formulation of new food concepts with an enhanced nutritional profile. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Food & Function es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Enhancing the nutritional profile and digestibility of lentil flour by solid state fermentation with Pleurotus ostreatus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0fo01527j es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107723RB-C22/ES/CONCEPTUALIZACION PARA LA CREACION DE ALIMENTOS CON PROTEINAS SOSTENIBLES. OBTENCION DE INGREDIENTES RICOS EN PROTEINAS VEGETALES CON DIGESTIBILIDAD Y FUNCIONALIDAD MEJORADAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Asensio-Grau, A.; Calvo-Lerma, J.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2020). Enhancing the nutritional profile and digestibility of lentil flour by solid state fermentation with Pleurotus ostreatus. Food & Function. 11(9):7905-7912. https://doi.org/10.1039/d0fo01527j es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d0fo01527j es_ES
dc.description.upvformatpinicio 7905 es_ES
dc.description.upvformatpfin 7912 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 9 es_ES
dc.identifier.pmid 32966474 es_ES
dc.relation.pasarela S\419749 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Stagnari, F., Maggio, A., Galieni, A., & Pisante, M. (2017). Multiple benefits of legumes for agriculture sustainability: an overview. Chemical and Biological Technologies in Agriculture, 4(1). doi:10.1186/s40538-016-0085-1 es_ES
dc.description.references M. W. Vasconcelos and A. M.Gomes , The legume grains: when tradition goes hand in hand with nutrition , in Traditional Foods , Springer , Boston, MA , 2016 , pp. 189–208 es_ES
dc.description.references World Health Organization , A healthy diet sustainably produced: information sheet (No. WHO/NMH/NHD/18.12) , World Health Organization , 2018 es_ES
dc.description.references Longobardi, F., Innamorato, V., Di Gioia, A., Ventrella, A., Lippolis, V., Logrieco, A. F., … Agostiano, A. (2017). Geographical origin discrimination of lentils (Lens culinaris Medik.) using 1H NMR fingerprinting and multivariate statistical analyses. Food Chemistry, 237, 743-748. doi:10.1016/j.foodchem.2017.05.159 es_ES
dc.description.references Espinosa-Páez, E., Alanis-Guzmán, M., Hernández-Luna, C., Báez-González, J., Amaya-Guerra, C., & Andrés-Grau, A. (2017). Increasing Antioxidant Activity and Protein Digestibility in Phaseolus vulgaris and Avena sativa by Fermentation with the Pleurotus ostreatus Fungus. Molecules, 22(12), 2275. doi:10.3390/molecules22122275 es_ES
dc.description.references Torino, M. I., Limón, R. I., Martínez-Villaluenga, C., Mäkinen, S., Pihlanto, A., Vidal-Valverde, C., & Frias, J. (2013). Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chemistry, 136(2), 1030-1037. doi:10.1016/j.foodchem.2012.09.015 es_ES
dc.description.references Ma, Z., Boye, J. I., & Hu, X. (2018). Nutritional quality and techno-functional changes in raw, germinated and fermented yellow field pea (Pisum sativum L.) upon pasteurization. LWT, 92, 147-154. doi:10.1016/j.lwt.2018.02.018 es_ES
dc.description.references kulkarni, S. S., Nene, S. N., & Joshi, K. S. (2020). A comparative study of production of hydrophobin like proteins (HYD-LPs) in submerged liquid and solid state fermentation from white rot fungus Pleurotus ostreatus. Biocatalysis and Agricultural Biotechnology, 23, 101440. doi:10.1016/j.bcab.2019.101440 es_ES
dc.description.references Hu, J., & Duvnjak, Z. (2004). Production of a Laccase and Decrease of the Phenolic Content in Canola Meal during the Growth of the FungusPleurotus ostreatus in Solid State Fermentation Processes. Engineering in Life Sciences, 4(1), 50-55. doi:10.1002/elsc.200400005 es_ES
dc.description.references Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2018). Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. Journal of Functional Foods, 46, 579-586. doi:10.1016/j.jff.2018.05.025 es_ES
dc.description.references Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j es_ES
dc.description.references Association of Official Analytical Chemists , Official methods of analysis , AOAC , 15th edn, 2000 es_ES
dc.description.references Tatirat, O., & Charoenrein, S. (2011). Physicochemical properties of konjac glucomannan extracted from konjac flour by a simple centrifugation process. LWT - Food Science and Technology, 44(10), 2059-2063. doi:10.1016/j.lwt.2011.07.019 es_ES
dc.description.references Armellini, R., Peinado, I., Asensio-Grau, A., Pittia, P., Scampicchio, M., Heredia, A., & Andres, A. (2019). In vitro starch digestibility and fate of crocins in pasta enriched with saffron extract. Food Chemistry, 283, 155-163. doi:10.1016/j.foodchem.2019.01.041 es_ES
dc.description.references Mishra, S., Monro, J., & Hedderley, D. (2008). Effect of Processing on Slowly Digestible Starch and Resistant Starch in Potato. Starch - Stärke, 60(9), 500-507. doi:10.1002/star.200800209 es_ES
dc.description.references Chang, C.-H., Lin, H.-Y., Chang, C.-Y., & Liu, Y.-C. (2006). Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. Journal of Food Engineering, 77(3), 478-485. doi:10.1016/j.jfoodeng.2005.06.061 es_ES
dc.description.references Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6-7), 669-675. doi:10.1016/j.jfca.2006.01.003 es_ES
dc.description.references Sotomayor, C., Frias, J., Vidal-Valverde, C., Fornal, J., Sadowska, J., & Urbano, G. (1999). Lentil Starch Content and its Microscopical Structure as Influenced by Natural Fermentation. Starch - Stärke, 51(5), 152-156. doi:10.1002/(sici)1521-379x(199905)51:5<152::aid-star152>3.0.co;2-n es_ES
dc.description.references Paz-Yépez, C., Peinado, I., Heredia, A., & Andrés, A. (2019). Influence of particle size and intestinal conditions on in vitro lipid and protein digestibility of walnuts and peanuts. Food Research International, 119, 951-959. doi:10.1016/j.foodres.2018.11.014 es_ES
dc.description.references Calvo-Lerma, J., Paz-Yépez, C., Asensio-Grau, A., Heredia, A., & Andrés, A. (2020). Impact of Processing and Intestinal Conditions on in Vitro Digestion of Chia (Salvia hispanica) Seeds and Derivatives. Foods, 9(3), 290. doi:10.3390/foods9030290 es_ES
dc.description.references Angulo-Bejarano, P. I., Verdugo-Montoya, N. M., Cuevas-Rodríguez, E. O., Milán-Carrillo, J., Mora-Escobedo, R., Lopez-Valenzuela, J. A., … Reyes-Moreno, C. (2008). Tempeh flour from chickpea (Cicer arietinum L.) nutritional and physicochemical properties. Food Chemistry, 106(1), 106-112. doi:10.1016/j.foodchem.2007.05.049 es_ES
dc.description.references Zhao, Y., Sun-Waterhouse, D., Zhao, M., Zhao, Q., Qiu, C., & Su, G. (2018). Effects of solid-state fermentation and proteolytic hydrolysis on defatted soybean meal. LWT, 97, 496-502. doi:10.1016/j.lwt.2018.06.008 es_ES
dc.description.references Adamović, M., Grubić, G., Milenković, I., Jovanović, R., Protić, R., Sretenović, L., & Stoićević, L. (1998). The biodegradation of wheat straw by Pleurotus ostreatus mushrooms and its use in cattle feeding. Animal Feed Science and Technology, 71(3-4), 357-362. doi:10.1016/s0377-8401(97)00150-8 es_ES
dc.description.references Hur, S. J., Lee, S. Y., Kim, Y.-C., Choi, I., & Kim, G.-B. (2014). Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry, 160, 346-356. doi:10.1016/j.foodchem.2014.03.112 es_ES
dc.description.references Dudonné, S., Vitrac, X., Coutière, P., Woillez, M., & Mérillon, J.-M. (2009). Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774. doi:10.1021/jf803011r es_ES
dc.description.references D. H. Alpers , Digestion and absorption of carbohydrates and proteins , in Physiology of the Gastrointestinal Tract , 1987 , pp. 1469–1487 es_ES
dc.description.references Osman, M. A. (2004). Changes in sorghum enzyme inhibitors, phytic acid, tannins and in vitro protein digestibility occurring during Khamir (local bread) fermentation. Food Chemistry, 88(1), 129-134. doi:10.1016/j.foodchem.2003.12.038 es_ES
dc.description.references Lena, G. D., Patroni, E., & Quaglia, G. B. (1997). Improving the nutritional value of wheat bran by a white-rot fungus. International Journal of Food Science & Technology, 32(6), 513-519. doi:10.1111/j.1365-2621.1997.tb02125.x es_ES
dc.description.references Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2019). In vitro study of cheese digestion: Effect of type of cheese and intestinal conditions on macronutrients digestibility. LWT, 113, 108278. doi:10.1016/j.lwt.2019.108278 es_ES
dc.description.references Sandhu, K. S., & Lim, S.-T. (2008). Digestibility of legume starches as influenced by their physical and structural properties. Carbohydrate Polymers, 71(2), 245-252. doi:10.1016/j.carbpol.2007.05.036 es_ES
dc.description.references Frei, M., Siddhuraju, P., & Becker, K. (2003). Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chemistry, 83(3), 395-402. doi:10.1016/s0308-8146(03)00101-8 es_ES
dc.description.references Asp, N.-G., van Amelsvoort, J. M. M., & Hautvast, J. G. A. J. (1996). Nutritional Implications Of Resistant Starch. Nutrition Research Reviews, 9(1), 1-31. doi:10.1079/nrr19960004 es_ES
dc.description.references Haenen, D., Zhang, J., Souza da Silva, C., Bosch, G., van der Meer, I. M., van Arkel, J., … Hooiveld, G. J. E. J. (2013). A Diet High in Resistant Starch Modulates Microbiota Composition, SCFA Concentrations, and Gene Expression in Pig Intestine. The Journal of Nutrition, 143(3), 274-283. doi:10.3945/jn.112.169672 es_ES
dc.description.references Pérez-Jiménez, J., & Saura-Calixto, F. (2005). Literature Data May Underestimate the Actual Antioxidant Capacity of Cereals. Journal of Agricultural and Food Chemistry, 53(12), 5036-5040. doi:10.1021/jf050049u es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem