Mostrar el registro sencillo del ítem
dc.contributor.author | Asensio-Grau, Andrea | es_ES |
dc.contributor.author | Calvo-Lerma, Joaquim | es_ES |
dc.contributor.author | Heredia Gutiérrez, Ana Belén | es_ES |
dc.contributor.author | Andrés Grau, Ana María | es_ES |
dc.date.accessioned | 2021-02-13T04:31:31Z | |
dc.date.available | 2021-02-13T04:31:31Z | |
dc.date.issued | 2020-09-01 | es_ES |
dc.identifier.issn | 2042-6496 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161195 | |
dc.description.abstract | [EN] Lentils (Lens culinaris) present an excellent nutrient profile. However, the increasing displacement of legumes from the diet and the possible negative effects of the food matrix and antinutrient factors encourage the application of new strategies to improve nutrient digestibility and to produce food concepts that contribute to the increase of legume consumption. This study approached the solid-state fermentation of lentils with an edible fungus (Pleurotus ostreatus) in order to produce improved lentil flour. Fermentation contributed to the increase of protein (23%), resistant starch (9.8%), and polyphenols (from 2.1 to 3.2 mg gallic acid equivalent per g dry matter). After simulatingin vitrodigestion, fermented flours presented a higher fraction of digested protein (17%) along with lower starch hydrolysis (34vs.24%), while the polyphenol content increased from 3.1 to 7.73 mg gallic acid equivalent per g dry matter. Thus, this study supports the application of solid-state fermentation with this edible fungus to obtain lentil flours with an enhanced digestibility profile as compared to non-fermented counterparts. Lentil flours could be used as a novel raw material in the formulation of new food concepts with an enhanced nutritional profile. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Food & Function | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Enhancing the nutritional profile and digestibility of lentil flour by solid state fermentation with Pleurotus ostreatus | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/d0fo01527j | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107723RB-C22/ES/CONCEPTUALIZACION PARA LA CREACION DE ALIMENTOS CON PROTEINAS SOSTENIBLES. OBTENCION DE INGREDIENTES RICOS EN PROTEINAS VEGETALES CON DIGESTIBILIDAD Y FUNCIONALIDAD MEJORADAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.description.bibliographicCitation | Asensio-Grau, A.; Calvo-Lerma, J.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2020). Enhancing the nutritional profile and digestibility of lentil flour by solid state fermentation with Pleurotus ostreatus. Food & Function. 11(9):7905-7912. https://doi.org/10.1039/d0fo01527j | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/d0fo01527j | es_ES |
dc.description.upvformatpinicio | 7905 | es_ES |
dc.description.upvformatpfin | 7912 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.pmid | 32966474 | es_ES |
dc.relation.pasarela | S\419749 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Stagnari, F., Maggio, A., Galieni, A., & Pisante, M. (2017). Multiple benefits of legumes for agriculture sustainability: an overview. Chemical and Biological Technologies in Agriculture, 4(1). doi:10.1186/s40538-016-0085-1 | es_ES |
dc.description.references | M. W. Vasconcelos and A. M.Gomes , The legume grains: when tradition goes hand in hand with nutrition , in Traditional Foods , Springer , Boston, MA , 2016 , pp. 189–208 | es_ES |
dc.description.references | World Health Organization , A healthy diet sustainably produced: information sheet (No. WHO/NMH/NHD/18.12) , World Health Organization , 2018 | es_ES |
dc.description.references | Longobardi, F., Innamorato, V., Di Gioia, A., Ventrella, A., Lippolis, V., Logrieco, A. F., … Agostiano, A. (2017). Geographical origin discrimination of lentils (Lens culinaris Medik.) using 1H NMR fingerprinting and multivariate statistical analyses. Food Chemistry, 237, 743-748. doi:10.1016/j.foodchem.2017.05.159 | es_ES |
dc.description.references | Espinosa-Páez, E., Alanis-Guzmán, M., Hernández-Luna, C., Báez-González, J., Amaya-Guerra, C., & Andrés-Grau, A. (2017). Increasing Antioxidant Activity and Protein Digestibility in Phaseolus vulgaris and Avena sativa by Fermentation with the Pleurotus ostreatus Fungus. Molecules, 22(12), 2275. doi:10.3390/molecules22122275 | es_ES |
dc.description.references | Torino, M. I., Limón, R. I., Martínez-Villaluenga, C., Mäkinen, S., Pihlanto, A., Vidal-Valverde, C., & Frias, J. (2013). Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chemistry, 136(2), 1030-1037. doi:10.1016/j.foodchem.2012.09.015 | es_ES |
dc.description.references | Ma, Z., Boye, J. I., & Hu, X. (2018). Nutritional quality and techno-functional changes in raw, germinated and fermented yellow field pea (Pisum sativum L.) upon pasteurization. LWT, 92, 147-154. doi:10.1016/j.lwt.2018.02.018 | es_ES |
dc.description.references | kulkarni, S. S., Nene, S. N., & Joshi, K. S. (2020). A comparative study of production of hydrophobin like proteins (HYD-LPs) in submerged liquid and solid state fermentation from white rot fungus Pleurotus ostreatus. Biocatalysis and Agricultural Biotechnology, 23, 101440. doi:10.1016/j.bcab.2019.101440 | es_ES |
dc.description.references | Hu, J., & Duvnjak, Z. (2004). Production of a Laccase and Decrease of the Phenolic Content in Canola Meal during the Growth of the FungusPleurotus ostreatus in Solid State Fermentation Processes. Engineering in Life Sciences, 4(1), 50-55. doi:10.1002/elsc.200400005 | es_ES |
dc.description.references | Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2018). Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. Journal of Functional Foods, 46, 579-586. doi:10.1016/j.jff.2018.05.025 | es_ES |
dc.description.references | Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j | es_ES |
dc.description.references | Association of Official Analytical Chemists , Official methods of analysis , AOAC , 15th edn, 2000 | es_ES |
dc.description.references | Tatirat, O., & Charoenrein, S. (2011). Physicochemical properties of konjac glucomannan extracted from konjac flour by a simple centrifugation process. LWT - Food Science and Technology, 44(10), 2059-2063. doi:10.1016/j.lwt.2011.07.019 | es_ES |
dc.description.references | Armellini, R., Peinado, I., Asensio-Grau, A., Pittia, P., Scampicchio, M., Heredia, A., & Andres, A. (2019). In vitro starch digestibility and fate of crocins in pasta enriched with saffron extract. Food Chemistry, 283, 155-163. doi:10.1016/j.foodchem.2019.01.041 | es_ES |
dc.description.references | Mishra, S., Monro, J., & Hedderley, D. (2008). Effect of Processing on Slowly Digestible Starch and Resistant Starch in Potato. Starch - Stärke, 60(9), 500-507. doi:10.1002/star.200800209 | es_ES |
dc.description.references | Chang, C.-H., Lin, H.-Y., Chang, C.-Y., & Liu, Y.-C. (2006). Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. Journal of Food Engineering, 77(3), 478-485. doi:10.1016/j.jfoodeng.2005.06.061 | es_ES |
dc.description.references | Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6-7), 669-675. doi:10.1016/j.jfca.2006.01.003 | es_ES |
dc.description.references | Sotomayor, C., Frias, J., Vidal-Valverde, C., Fornal, J., Sadowska, J., & Urbano, G. (1999). Lentil Starch Content and its Microscopical Structure as Influenced by Natural Fermentation. Starch - Stärke, 51(5), 152-156. doi:10.1002/(sici)1521-379x(199905)51:5<152::aid-star152>3.0.co;2-n | es_ES |
dc.description.references | Paz-Yépez, C., Peinado, I., Heredia, A., & Andrés, A. (2019). Influence of particle size and intestinal conditions on in vitro lipid and protein digestibility of walnuts and peanuts. Food Research International, 119, 951-959. doi:10.1016/j.foodres.2018.11.014 | es_ES |
dc.description.references | Calvo-Lerma, J., Paz-Yépez, C., Asensio-Grau, A., Heredia, A., & Andrés, A. (2020). Impact of Processing and Intestinal Conditions on in Vitro Digestion of Chia (Salvia hispanica) Seeds and Derivatives. Foods, 9(3), 290. doi:10.3390/foods9030290 | es_ES |
dc.description.references | Angulo-Bejarano, P. I., Verdugo-Montoya, N. M., Cuevas-Rodríguez, E. O., Milán-Carrillo, J., Mora-Escobedo, R., Lopez-Valenzuela, J. A., … Reyes-Moreno, C. (2008). Tempeh flour from chickpea (Cicer arietinum L.) nutritional and physicochemical properties. Food Chemistry, 106(1), 106-112. doi:10.1016/j.foodchem.2007.05.049 | es_ES |
dc.description.references | Zhao, Y., Sun-Waterhouse, D., Zhao, M., Zhao, Q., Qiu, C., & Su, G. (2018). Effects of solid-state fermentation and proteolytic hydrolysis on defatted soybean meal. LWT, 97, 496-502. doi:10.1016/j.lwt.2018.06.008 | es_ES |
dc.description.references | Adamović, M., Grubić, G., Milenković, I., Jovanović, R., Protić, R., Sretenović, L., & Stoićević, L. (1998). The biodegradation of wheat straw by Pleurotus ostreatus mushrooms and its use in cattle feeding. Animal Feed Science and Technology, 71(3-4), 357-362. doi:10.1016/s0377-8401(97)00150-8 | es_ES |
dc.description.references | Hur, S. J., Lee, S. Y., Kim, Y.-C., Choi, I., & Kim, G.-B. (2014). Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry, 160, 346-356. doi:10.1016/j.foodchem.2014.03.112 | es_ES |
dc.description.references | Dudonné, S., Vitrac, X., Coutière, P., Woillez, M., & Mérillon, J.-M. (2009). Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774. doi:10.1021/jf803011r | es_ES |
dc.description.references | D. H. Alpers , Digestion and absorption of carbohydrates and proteins , in Physiology of the Gastrointestinal Tract , 1987 , pp. 1469–1487 | es_ES |
dc.description.references | Osman, M. A. (2004). Changes in sorghum enzyme inhibitors, phytic acid, tannins and in vitro protein digestibility occurring during Khamir (local bread) fermentation. Food Chemistry, 88(1), 129-134. doi:10.1016/j.foodchem.2003.12.038 | es_ES |
dc.description.references | Lena, G. D., Patroni, E., & Quaglia, G. B. (1997). Improving the nutritional value of wheat bran by a white-rot fungus. International Journal of Food Science & Technology, 32(6), 513-519. doi:10.1111/j.1365-2621.1997.tb02125.x | es_ES |
dc.description.references | Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2019). In vitro study of cheese digestion: Effect of type of cheese and intestinal conditions on macronutrients digestibility. LWT, 113, 108278. doi:10.1016/j.lwt.2019.108278 | es_ES |
dc.description.references | Sandhu, K. S., & Lim, S.-T. (2008). Digestibility of legume starches as influenced by their physical and structural properties. Carbohydrate Polymers, 71(2), 245-252. doi:10.1016/j.carbpol.2007.05.036 | es_ES |
dc.description.references | Frei, M., Siddhuraju, P., & Becker, K. (2003). Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chemistry, 83(3), 395-402. doi:10.1016/s0308-8146(03)00101-8 | es_ES |
dc.description.references | Asp, N.-G., van Amelsvoort, J. M. M., & Hautvast, J. G. A. J. (1996). Nutritional Implications Of Resistant Starch. Nutrition Research Reviews, 9(1), 1-31. doi:10.1079/nrr19960004 | es_ES |
dc.description.references | Haenen, D., Zhang, J., Souza da Silva, C., Bosch, G., van der Meer, I. M., van Arkel, J., … Hooiveld, G. J. E. J. (2013). A Diet High in Resistant Starch Modulates Microbiota Composition, SCFA Concentrations, and Gene Expression in Pig Intestine. The Journal of Nutrition, 143(3), 274-283. doi:10.3945/jn.112.169672 | es_ES |
dc.description.references | Pérez-Jiménez, J., & Saura-Calixto, F. (2005). Literature Data May Underestimate the Actual Antioxidant Capacity of Cereals. Journal of Agricultural and Food Chemistry, 53(12), 5036-5040. doi:10.1021/jf050049u | es_ES |