- -

Use of tannins to enhance the functional properties of protein based films.

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Use of tannins to enhance the functional properties of protein based films.

Show full item record

Cano, A.; Andrés, M.; Chiralt Boix, MA.; González Martínez, MC. (2020). Use of tannins to enhance the functional properties of protein based films. Food Hydrocolloids. 100:1-9. https://doi.org/10.1016/j.foodhyd.2019.105443

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161196

Files in this item

Item Metadata

Title: Use of tannins to enhance the functional properties of protein based films.
Author: Cano, A. Andrés, M. Chiralt Boix, Mª Amparo González Martínez, María Consuelo
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Issued date:
Abstract:
[EN] In this study, three tannins from different sources have been used (from white peel grape (W), red peel grape (R) and from oak bark (O)) to obtain active films based on proteins (caseinate and gelatin) on the basis ...[+]
Subjects: Microstructure , Mechanical properties , Optical properties , E. Coli , Listeria , Water vapour permeability
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Food Hydrocolloids. (issn: 0268-005X )
DOI: 10.1016/j.foodhyd.2019.105443
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.foodhyd.2019.105443
Project ID:
info:eu-repo/grantAgreement/MINECO//AGL2013-42989-R/ES/NUEVOS MATERIALES BIODEGRADABLES MULTICAPA PARA ENVASADO ACTIVO DE ALIMENTOS SENSIBLES AL DETERIORO MICROBIANO Y%2FO OXIDATIVO/
AEI/AGL2016-76699-R
Thanks:
The authors acknowledge the financial support from the Spanish Ministerio de Economia y Competitividad through the project AGL2016-76699-R.
Type: Artículo

References

Akiyama, H. (2001). Antibacterial action of several tannins against Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 48(4), 487-491. doi:10.1093/jac/48.4.487

Arrieta, M. P., Peltzer, M. A., Garrigós, M. del C., & Jiménez, A. (2013). Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. Journal of Food Engineering, 114(4), 486-494. doi:10.1016/j.jfoodeng.2012.09.002

Atarés, L., Bonilla, J., & Chiralt, A. (2010). Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 100(4), 678-687. doi:10.1016/j.jfoodeng.2010.05.018 [+]
Akiyama, H. (2001). Antibacterial action of several tannins against Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 48(4), 487-491. doi:10.1093/jac/48.4.487

Arrieta, M. P., Peltzer, M. A., Garrigós, M. del C., & Jiménez, A. (2013). Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. Journal of Food Engineering, 114(4), 486-494. doi:10.1016/j.jfoodeng.2012.09.002

Atarés, L., Bonilla, J., & Chiralt, A. (2010). Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 100(4), 678-687. doi:10.1016/j.jfoodeng.2010.05.018

Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191-203. doi:10.1016/j.foodchem.2005.07.042

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5

Cala, O., Fabre, S., Pinaud, N., Dufourc, E., Fouquet, E., Laguerre, M., & Pianet, I. (2011). Towards a Molecular Interpretation of Astringency: Synthesis, 3D Structure, Colloidal State, and Human Saliva Protein Recognition of Procyanidins. Planta Medica, 77(11), 1116-1122. doi:10.1055/s-0030-1270848

Cano, A., Cháfer, M., Chiralt, A., & González-Martínez, C. (2015). Physical and Antimicrobial Properties of Starch-PVA Blend Films as Affected by the Incorporation of Natural Antimicrobial Agents. Foods, 5(4), 3. doi:10.3390/foods5010003

Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075

Cheynier, V. (2005). Polyphenols in foods are more complex than often thought. The American Journal of Clinical Nutrition, 81(1), 223S-229S. doi:10.1093/ajcn/81.1.223s

Chung, K.-T., Wong, T. Y., Wei, C.-I., Huang, Y.-W., & Lin, Y. (1998). Tannins and Human Health: A Review. Critical Reviews in Food Science and Nutrition, 38(6), 421-464. doi:10.1080/10408699891274273

Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174-181. doi:10.1016/j.copbio.2011.08.007

Doss, A. (2009). Antibacterial activity of tannins from the leaves of Solanum trilobatum Linn. Indian Journal of Science and Technology, 2(2), 41-43. doi:10.17485/ijst/2009/v2i2.5

Fabra, M. J., Hambleton, A., Talens, P., Debeaufort, F., & Chiralt, A. (2011). Effect of ferulic acid and α-tocopherol antioxidants on properties of sodium caseinate edible films. Food Hydrocolloids, 25(6), 1441-1447. doi:10.1016/j.foodhyd.2011.01.012

Fabra, M. J., Jiménez, A., Atarés, L., Talens, P., & Chiralt, A. (2009). Effect of Fatty Acids and Beeswax Addition on Properties of Sodium Caseinate Dispersions and Films. Biomacromolecules, 10(6), 1500-1507. doi:10.1021/bm900098p

Girard, A. L., Teferra, T., & Awika, J. M. (2019). Effects of condensed vs hydrolysable tannins on gluten film strength and stability. Food Hydrocolloids, 89, 36-43. doi:10.1016/j.foodhyd.2018.10.018

Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Effect of sodium caseinate on properties and ageing behaviour of corn starch based films. Food Hydrocolloids, 29(2), 265-271. doi:10.1016/j.foodhyd.2012.03.014

Jridi, M., Hajji, S., Ayed, H. B., Lassoued, I., Mbarek, A., Kammoun, M., … Nasri, M. (2014). Physical, structural, antioxidant and antimicrobial properties of gelatin–chitosan composite edible films. International Journal of Biological Macromolecules, 67, 373-379. doi:10.1016/j.ijbiomac.2014.03.054

Kristo, E., Koutsoumanis, K. P., & Biliaderis, C. G. (2008). Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocolloids, 22(3), 373-386. doi:10.1016/j.foodhyd.2006.12.003

Labuckas, D. O., Maestri, D. M., Perelló, M., Martínez, M. L., & Lamarque, A. L. (2008). Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food Chemistry, 107(2), 607-612. doi:10.1016/j.foodchem.2007.08.051

Matthäus, B. (2002). Antioxidant Activity of Extracts Obtained from Residues of Different Oilseeds. Journal of Agricultural and Food Chemistry, 50(12), 3444-3452. doi:10.1021/jf011440s

Muller, J., González-Martínez, C., & Chiralt, A. (2017). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95, 56-70. doi:10.1016/j.eurpolymj.2017.07.019

Ozdal, T., Capanoglu, E., & Altay, F. (2013). A review on protein–phenolic interactions and associated changes. Food Research International, 51(2), 954-970. doi:10.1016/j.foodres.2013.02.009

Pastor, C., Sánchez-González, L., Chiralt, A., Cháfer, M., & González-Martínez, C. (2013). Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food Hydrocolloids, 30(1), 272-280. doi:10.1016/j.foodhyd.2012.05.026

Peña, C., de la Caba, K., Eceiza, A., Ruseckaite, R., & Mondragon, I. (2010). Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresource Technology, 101(17), 6836-6842. doi:10.1016/j.biortech.2010.03.112

Prigent, S. V. E., Gruppen, H., Visser, A. J. W. G., van Koningsveld, G. A., de Jong, G. A. H., & Voragen, A. G. J. (2003). Effects of Non-covalent Interactions with 5-O-Caffeoylquinic Acid (Chlorogenic Acid) on the Heat Denaturation and Solubility of Globular Proteins. Journal of Agricultural and Food Chemistry, 51(17), 5088-5095. doi:10.1021/jf021229w

Rawel, H. M., Kroll, J., & Hohl, U. C. (2001). Model studies on reactions of plant phenols with whey proteins. Nahrung/Food, 45(2), 72-81. doi:10.1002/1521-3803(20010401)45:2<72::aid-food72>3.0.co;2-u

Sánchez-González, L., González-Martínez, C., Chiralt, A., & Cháfer, M. (2010). Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. Journal of Food Engineering, 98(4), 443-452. doi:10.1016/j.jfoodeng.2010.01.026

Sánchez-Moreno, C., Larrauri, J. A., & Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270-276. doi:10.1002/(sici)1097-0010(199802)76:2<270::aid-jsfa945>3.0.co;2-9

Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 146, 36-45. doi:10.1016/j.carbpol.2016.03.051

Taguri, T., Tanaka, T., & Kouno, I. (2004). Antimicrobial Activity of 10 Different Plant Polyphenols against Bacteria Causing Food-Borne Disease. Biological and Pharmaceutical Bulletin, 27(12), 1965-1969. doi:10.1248/bpb.27.1965

Tournour, H. H., Segundo, M. A., Magalhães, L. M., Barreiros, L., Queiroz, J., & Cunha, L. M. (2015). Valorization of grape pomace: Extraction of bioactive phenolics with antioxidant properties. Industrial Crops and Products, 74, 397-406. doi:10.1016/j.indcrop.2015.05.055

Tsali, A., & Goula, A. M. (2018). Valorization of grape pomace: Encapsulation and storage stability of its phenolic extract. Powder Technology, 340, 194-207. doi:10.1016/j.powtec.2018.09.011

Utama, I. M. S., Wills, R. B. H., Ben-yehoshua Shimshon, & Kuek, C. (2002). In Vitro Efficacy of Plant Volatiles for Inhibiting the Growth of Fruit and Vegetable Decay Microorganisms. Journal of Agricultural and Food Chemistry, 50(22), 6371-6377. doi:10.1021/jf020484d

Von Staszewski, M., Pilosof, A. M. R., & Jagus, R. J. (2011). Antioxidant and antimicrobial performance of different Argentinean green tea varieties as affected by whey proteins. Food Chemistry, 125(1), 186-192. doi:10.1016/j.foodchem.2010.08.059

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record