- -

Use of tannins to enhance the functional properties of protein based films.

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Use of tannins to enhance the functional properties of protein based films.

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cano, A. es_ES
dc.contributor.author Andrés, M. es_ES
dc.contributor.author Chiralt Boix, Mª Amparo es_ES
dc.contributor.author González Martínez, María Consuelo es_ES
dc.date.accessioned 2021-02-13T04:31:34Z
dc.date.available 2021-02-13T04:31:34Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 0268-005X es_ES
dc.identifier.uri http://hdl.handle.net/10251/161196
dc.description.abstract [EN] In this study, three tannins from different sources have been used (from white peel grape (W), red peel grape (R) and from oak bark (O)) to obtain active films based on proteins (caseinate and gelatin) on the basis of their natural origin and potential antioxidant and antimicrobial activity. Films were obtained in two different ways: monolayer films, by homogeneously blending the tannins with the proteins and bilayer films, by coating the previously obtained protein film with the different tannin solutions. The microstructural, physicochemical characterisation as well as the antioxidant and antimicrobial activities of the films were analysed. The interactions developed between tannins and protein matrices determined the physico-chemical properties of the films. Significant changes were only observed in tannin-caseinate films, due to the establishment of hydrogen bonding and hydrophobic interactions, especially when using the tannin with the greatest phenolic content (W). Thus, the W tannin caseinate based films turned thicker, with markedly improved (p < 0.05) water solubility and WVP values and became mechanically stiffer and less stretchable. All of the films incorporating tannins exhibited remarkable antioxidant and antimicrobial activities against E.Coli and L. innocua, being the bilayer films containing W tannin the ones exhibiting the best antioxidant and antimicrobial activity against both bacteria (5 log of reduction), due to the greater availability of the active component when incorporated as a bilayer. es_ES
dc.description.sponsorship The authors acknowledge the financial support from the Spanish Ministerio de Economia y Competitividad through the project AGL2016-76699-R. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Food Hydrocolloids es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Microstructure es_ES
dc.subject Mechanical properties es_ES
dc.subject Optical properties es_ES
dc.subject E. Coli es_ES
dc.subject Listeria es_ES
dc.subject Water vapour permeability es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Use of tannins to enhance the functional properties of protein based films. es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.foodhyd.2019.105443 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2013-42989-R/ES/NUEVOS MATERIALES BIODEGRADABLES MULTICAPA PARA ENVASADO ACTIVO DE ALIMENTOS SENSIBLES AL DETERIORO MICROBIANO Y%2FO OXIDATIVO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Cano, A.; Andrés, M.; Chiralt Boix, MA.; González Martínez, MC. (2020). Use of tannins to enhance the functional properties of protein based films. Food Hydrocolloids. 100:1-9. https://doi.org/10.1016/j.foodhyd.2019.105443 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.foodhyd.2019.105443 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 100 es_ES
dc.relation.pasarela S\399944 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Akiyama, H. (2001). Antibacterial action of several tannins against Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 48(4), 487-491. doi:10.1093/jac/48.4.487 es_ES
dc.description.references Arrieta, M. P., Peltzer, M. A., Garrigós, M. del C., & Jiménez, A. (2013). Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. Journal of Food Engineering, 114(4), 486-494. doi:10.1016/j.jfoodeng.2012.09.002 es_ES
dc.description.references Atarés, L., Bonilla, J., & Chiralt, A. (2010). Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 100(4), 678-687. doi:10.1016/j.jfoodeng.2010.05.018 es_ES
dc.description.references Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191-203. doi:10.1016/j.foodchem.2005.07.042 es_ES
dc.description.references Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5 es_ES
dc.description.references Cala, O., Fabre, S., Pinaud, N., Dufourc, E., Fouquet, E., Laguerre, M., & Pianet, I. (2011). Towards a Molecular Interpretation of Astringency: Synthesis, 3D Structure, Colloidal State, and Human Saliva Protein Recognition of Procyanidins. Planta Medica, 77(11), 1116-1122. doi:10.1055/s-0030-1270848 es_ES
dc.description.references Cano, A., Cháfer, M., Chiralt, A., & González-Martínez, C. (2015). Physical and Antimicrobial Properties of Starch-PVA Blend Films as Affected by the Incorporation of Natural Antimicrobial Agents. Foods, 5(4), 3. doi:10.3390/foods5010003 es_ES
dc.description.references Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075 es_ES
dc.description.references Cheynier, V. (2005). Polyphenols in foods are more complex than often thought. The American Journal of Clinical Nutrition, 81(1), 223S-229S. doi:10.1093/ajcn/81.1.223s es_ES
dc.description.references Chung, K.-T., Wong, T. Y., Wei, C.-I., Huang, Y.-W., & Lin, Y. (1998). Tannins and Human Health: A Review. Critical Reviews in Food Science and Nutrition, 38(6), 421-464. doi:10.1080/10408699891274273 es_ES
dc.description.references Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174-181. doi:10.1016/j.copbio.2011.08.007 es_ES
dc.description.references Doss, A. (2009). Antibacterial activity of tannins from the leaves of Solanum trilobatum Linn. Indian Journal of Science and Technology, 2(2), 41-43. doi:10.17485/ijst/2009/v2i2.5 es_ES
dc.description.references Fabra, M. J., Hambleton, A., Talens, P., Debeaufort, F., & Chiralt, A. (2011). Effect of ferulic acid and α-tocopherol antioxidants on properties of sodium caseinate edible films. Food Hydrocolloids, 25(6), 1441-1447. doi:10.1016/j.foodhyd.2011.01.012 es_ES
dc.description.references Fabra, M. J., Jiménez, A., Atarés, L., Talens, P., & Chiralt, A. (2009). Effect of Fatty Acids and Beeswax Addition on Properties of Sodium Caseinate Dispersions and Films. Biomacromolecules, 10(6), 1500-1507. doi:10.1021/bm900098p es_ES
dc.description.references Girard, A. L., Teferra, T., & Awika, J. M. (2019). Effects of condensed vs hydrolysable tannins on gluten film strength and stability. Food Hydrocolloids, 89, 36-43. doi:10.1016/j.foodhyd.2018.10.018 es_ES
dc.description.references Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Effect of sodium caseinate on properties and ageing behaviour of corn starch based films. Food Hydrocolloids, 29(2), 265-271. doi:10.1016/j.foodhyd.2012.03.014 es_ES
dc.description.references Jridi, M., Hajji, S., Ayed, H. B., Lassoued, I., Mbarek, A., Kammoun, M., … Nasri, M. (2014). Physical, structural, antioxidant and antimicrobial properties of gelatin–chitosan composite edible films. International Journal of Biological Macromolecules, 67, 373-379. doi:10.1016/j.ijbiomac.2014.03.054 es_ES
dc.description.references Kristo, E., Koutsoumanis, K. P., & Biliaderis, C. G. (2008). Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocolloids, 22(3), 373-386. doi:10.1016/j.foodhyd.2006.12.003 es_ES
dc.description.references Labuckas, D. O., Maestri, D. M., Perelló, M., Martínez, M. L., & Lamarque, A. L. (2008). Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food Chemistry, 107(2), 607-612. doi:10.1016/j.foodchem.2007.08.051 es_ES
dc.description.references Matthäus, B. (2002). Antioxidant Activity of Extracts Obtained from Residues of Different Oilseeds. Journal of Agricultural and Food Chemistry, 50(12), 3444-3452. doi:10.1021/jf011440s es_ES
dc.description.references Muller, J., González-Martínez, C., & Chiralt, A. (2017). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95, 56-70. doi:10.1016/j.eurpolymj.2017.07.019 es_ES
dc.description.references Ozdal, T., Capanoglu, E., & Altay, F. (2013). A review on protein–phenolic interactions and associated changes. Food Research International, 51(2), 954-970. doi:10.1016/j.foodres.2013.02.009 es_ES
dc.description.references Pastor, C., Sánchez-González, L., Chiralt, A., Cháfer, M., & González-Martínez, C. (2013). Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food Hydrocolloids, 30(1), 272-280. doi:10.1016/j.foodhyd.2012.05.026 es_ES
dc.description.references Peña, C., de la Caba, K., Eceiza, A., Ruseckaite, R., & Mondragon, I. (2010). Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresource Technology, 101(17), 6836-6842. doi:10.1016/j.biortech.2010.03.112 es_ES
dc.description.references Prigent, S. V. E., Gruppen, H., Visser, A. J. W. G., van Koningsveld, G. A., de Jong, G. A. H., & Voragen, A. G. J. (2003). Effects of Non-covalent Interactions with 5-O-Caffeoylquinic Acid (Chlorogenic Acid) on the Heat Denaturation and Solubility of Globular Proteins. Journal of Agricultural and Food Chemistry, 51(17), 5088-5095. doi:10.1021/jf021229w es_ES
dc.description.references Rawel, H. M., Kroll, J., & Hohl, U. C. (2001). Model studies on reactions of plant phenols with whey proteins. Nahrung/Food, 45(2), 72-81. doi:10.1002/1521-3803(20010401)45:2<72::aid-food72>3.0.co;2-u es_ES
dc.description.references Sánchez-González, L., González-Martínez, C., Chiralt, A., & Cháfer, M. (2010). Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. Journal of Food Engineering, 98(4), 443-452. doi:10.1016/j.jfoodeng.2010.01.026 es_ES
dc.description.references Sánchez-Moreno, C., Larrauri, J. A., & Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270-276. doi:10.1002/(sici)1097-0010(199802)76:2<270::aid-jsfa945>3.0.co;2-9 es_ES
dc.description.references Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 146, 36-45. doi:10.1016/j.carbpol.2016.03.051 es_ES
dc.description.references Taguri, T., Tanaka, T., & Kouno, I. (2004). Antimicrobial Activity of 10 Different Plant Polyphenols against Bacteria Causing Food-Borne Disease. Biological and Pharmaceutical Bulletin, 27(12), 1965-1969. doi:10.1248/bpb.27.1965 es_ES
dc.description.references Tournour, H. H., Segundo, M. A., Magalhães, L. M., Barreiros, L., Queiroz, J., & Cunha, L. M. (2015). Valorization of grape pomace: Extraction of bioactive phenolics with antioxidant properties. Industrial Crops and Products, 74, 397-406. doi:10.1016/j.indcrop.2015.05.055 es_ES
dc.description.references Tsali, A., & Goula, A. M. (2018). Valorization of grape pomace: Encapsulation and storage stability of its phenolic extract. Powder Technology, 340, 194-207. doi:10.1016/j.powtec.2018.09.011 es_ES
dc.description.references Utama, I. M. S., Wills, R. B. H., Ben-yehoshua Shimshon, & Kuek, C. (2002). In Vitro Efficacy of Plant Volatiles for Inhibiting the Growth of Fruit and Vegetable Decay Microorganisms. Journal of Agricultural and Food Chemistry, 50(22), 6371-6377. doi:10.1021/jf020484d es_ES
dc.description.references Von Staszewski, M., Pilosof, A. M. R., & Jagus, R. J. (2011). Antioxidant and antimicrobial performance of different Argentinean green tea varieties as affected by whey proteins. Food Chemistry, 125(1), 186-192. doi:10.1016/j.foodchem.2010.08.059 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem