- -

Radiomicrobiomics: Advancing Along the Gut-brain Axis Through Big Data Analysis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Radiomicrobiomics: Advancing Along the Gut-brain Axis Through Big Data Analysis

Show full item record

De Santis, S.; Moratal, D.; Canals, S. (2019). Radiomicrobiomics: Advancing Along the Gut-brain Axis Through Big Data Analysis. Neuroscience. 403:145-149. https://doi.org/10.1016/j.neuroscience.2017.11.055

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161202

Files in this item

Item Metadata

Title: Radiomicrobiomics: Advancing Along the Gut-brain Axis Through Big Data Analysis
Author: De Santis, Silvia Moratal, David Canals, Santiago
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
[EN] The gut-brain axis communicates the brain with the gut microbiota, a bidirectional conduit that has received increasing attention in recent years thanks to its emerging role in brain development and function. Alterations ...[+]
Subjects: Advanced MRI , Microbiota , Machine learning , Big data , Gut-brain axis , Radiomicrobiomics
Copyrigths: Cerrado
Source:
Neuroscience. (issn: 0306-4522 )
DOI: 10.1016/j.neuroscience.2017.11.055
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.neuroscience.2017.11.055
Project ID:
info:eu-repo/grantAgreement/EC/H2020/668863/EU/Systems Biology of Alcohol Addiction: Modeling and validating disease state networks in human and animal brains for understanding pathophysiolgy, predicting outcomes and improving therapy/
...[+]
info:eu-repo/grantAgreement/EC/H2020/668863/EU/Systems Biology of Alcohol Addiction: Modeling and validating disease state networks in human and animal brains for understanding pathophysiolgy, predicting outcomes and improving therapy/
info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-1-R/ES/TRATAR LA ENFERMEDAD RESINTONIZANDO LA DINAMICA DE LAS REDES CEREBRALES/
info:eu-repo/grantAgreement/MINECO//SEV-2013-0317/ES/-/
info:eu-repo/grantAgreement/BBRF//25104/
info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/
info:eu-repo/grantAgreement/GVA//AEST%2F2017%2F013/
[-]
Thanks:
These studies were supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under grants BFU2015-64380-C2-1-R (S.C.) and BFU2015-64380-C2-2-R (D.M.). This project received funding ...[+]
Type: Artículo

References

Ahluwalia, V., Wade, J. B., Heuman, D. M., Hammeke, T. A., Sanyal, A. J., Sterling, R. K., … Bajaj, J. S. (2014). Enhancement of functional connectivity, working memory and inhibitory control on multi-modal brain MR imaging with Rifaximin in Cirrhosis: Implications for the gut-liver-brain axis. Metabolic Brain Disease, 29(4), 1017-1025. doi:10.1007/s11011-014-9507-6

Ahluwalia, V., Betrapally, N. S., Hylemon, P. B., White, M. B., Gillevet, P. M., Unser, A. B., … Bajaj, J. S. (2016). Impaired Gut-Liver-Brain Axis in Patients with Cirrhosis. Scientific Reports, 6(1). doi:10.1038/srep26800

Assaf, Y., Freidlin, R. Z., Rohde, G. K., & Basser, P. J. (2004). New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magnetic Resonance in Medicine, 52(5), 965-978. doi:10.1002/mrm.20274 [+]
Ahluwalia, V., Wade, J. B., Heuman, D. M., Hammeke, T. A., Sanyal, A. J., Sterling, R. K., … Bajaj, J. S. (2014). Enhancement of functional connectivity, working memory and inhibitory control on multi-modal brain MR imaging with Rifaximin in Cirrhosis: Implications for the gut-liver-brain axis. Metabolic Brain Disease, 29(4), 1017-1025. doi:10.1007/s11011-014-9507-6

Ahluwalia, V., Betrapally, N. S., Hylemon, P. B., White, M. B., Gillevet, P. M., Unser, A. B., … Bajaj, J. S. (2016). Impaired Gut-Liver-Brain Axis in Patients with Cirrhosis. Scientific Reports, 6(1). doi:10.1038/srep26800

Assaf, Y., Freidlin, R. Z., Rohde, G. K., & Basser, P. J. (2004). New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magnetic Resonance in Medicine, 52(5), 965-978. doi:10.1002/mrm.20274

Bajaj, J. S., Ahluwalia, V., Steinberg, J. L., Hobgood, S., Boling, P. A., Godschalk, M., … Wade, J. B. (2016). Elderly patients have an altered gut-brain axis regardless of the presence of cirrhosis. Scientific Reports, 6(1). doi:10.1038/srep38481

Barazany, D., Basser, P. J., & Assaf, Y. (2009). In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain, 132(5), 1210-1220. doi:10.1093/brain/awp042

Basser, P. J., Mattiello, J., & Lebihan, D. (1994). Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo. Journal of Magnetic Resonance, Series B, 103(3), 247-254. doi:10.1006/jmrb.1994.1037

Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186-198. doi:10.1038/nrn2575

Costello, E. K., Lauber, C. L., Hamady, M., Fierer, N., Gordon, J. I., & Knight, R. (2009). Bacterial Community Variation in Human Body Habitats Across Space and Time. Science, 326(5960), 1694-1697. doi:10.1126/science.1177486

De Santis, S., Assaf, Y., Jeurissen, B., Jones, D. K., & Roebroeck, A. (2016). T 1 relaxometry of crossing fibres in the human brain. NeuroImage, 141, 133-142. doi:10.1016/j.neuroimage.2016.07.037

De Santis S, Granberg T, Ouellette R, Treaba CA, Fan Q, Herranz E, Mainero C, Toschi N (2017) Early axonal damage in normal appearing white matter in Multiple Sclerosis: novel insights from multi-shell diffusion MRI. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, July 11–15.

Dinan, T. G., & Cryan, J. F. (2012). Regulation of the stress response by the gut microbiota: Implications for psychoneuroendocrinology. Psychoneuroendocrinology, 37(9), 1369-1378. doi:10.1016/j.psyneuen.2012.03.007

Dinan, T. G., & Cryan, J. F. (2016). Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. The Journal of Physiology, 595(2), 489-503. doi:10.1113/jp273106

Dinan, T. G., & Cryan, J. F. (2017). Brain–gut–microbiota axis — mood, metabolism and behaviour. Nature Reviews Gastroenterology & Hepatology, 14(2), 69-70. doi:10.1038/nrgastro.2016.200

El Aidy, S., Dinan, T. G., & Cryan, J. F. (2014). Immune modulation of the brain-gut-microbe axis. Frontiers in Microbiology, 5. doi:10.3389/fmicb.2014.00146

Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278(2), 563-577. doi:10.1148/radiol.2015151169

Gonzalez, A., & Knight, R. (2012). Advancing analytical algorithms and pipelines for billions of microbial sequences. Current Opinion in Biotechnology, 23(1), 64-71. doi:10.1016/j.copbio.2011.11.028

González, I., Cao, K.-A. L., Davis, M. J., & Déjean, S. (2012). Visualising associations between paired ‘omics’ data sets. BioData Mining, 5(1). doi:10.1186/1756-0381-5-19

Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21(4), 424-430. doi:10.1097/wco.0b013e328306f2c5

Jespersen, S. N., Kroenke, C. D., Østergaard, L., Ackerman, J. J. H., & Yablonskiy, D. A. (2007). Modeling dendrite density from magnetic resonance diffusion measurements. NeuroImage, 34(4), 1473-1486. doi:10.1016/j.neuroimage.2006.10.037

Kamada, N., Chen, G. Y., Inohara, N., & Núñez, G. (2013). Control of pathogens and pathobionts by the gut microbiota. Nature Immunology, 14(7), 685-690. doi:10.1038/ni.2608

Kelly, J. R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., … Dinan, T. G. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109-118. doi:10.1016/j.jpsychires.2016.07.019

Layeghifard, M., Hwang, D. M., & Guttman, D. S. (2017). Disentangling Interactions in the Microbiome: A Network Perspective. Trends in Microbiology, 25(3), 217-228. doi:10.1016/j.tim.2016.11.008

Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences, 15(10), 483-506. doi:10.1016/j.tics.2011.08.003

Mottershead, J. P., Schmierer, K., Clemence, M., Thornton, J. S., Scaravilli, F., Barker, G. J., … Miller, D. H. (2003). High field MRI correlates of myelin content and axonal density in multiple sclerosis. Journal of Neurology, 250(11), 1293-1301. doi:10.1007/s00415-003-0192-3

Ochoa-Repáraz, J., & Kasper, L. H. (2017). The influence of gut-derived CD39 regulatory T cells in CNS demyelinating disease. Translational Research, 179, 126-138. doi:10.1016/j.trsl.2016.07.016

Rintala, A., Pietilä, S., Munukka, E., Eerola, E., Pursiheimo, J.-P., Laiho, A., … Huovinen, P. (2017). Gut Microbiota Analysis Results Are Highly Dependent on the 16S rRNA Gene Target Region, Whereas the Impact of DNA Extraction Is Minor. Journal of Biomolecular Techniques : JBT, 28(1), 19-30. doi:10.7171/jbt.17-2801-003

Sled, J. G., & Pike, G. B. (2000). Quantitative Interpretation of Magnetization Transfer in Spoiled Gradient Echo MRI Sequences. Journal of Magnetic Resonance, 145(1), 24-36. doi:10.1006/jmre.2000.2059

Smith, S. M., Vidaurre, D., Beckmann, C. F., Glasser, M. F., Jenkinson, M., Miller, K. L., … Van Essen, D. C. (2013). Functional connectomics from resting-state fMRI. Trends in Cognitive Sciences, 17(12), 666-682. doi:10.1016/j.tics.2013.09.016

Sporns, O., & Zwi, J. D. (2004). The Small World of the Cerebral Cortex. Neuroinformatics, 2(2), 145-162. doi:10.1385/ni:2:2:145

Tillisch, K., & Labus, J. S. (2014). Neuroimaging the Microbiome-Gut–Brain Axis. Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease, 405-416. doi:10.1007/978-1-4939-0897-4_18

Tillisch, K., Wang, Z., Kilpatrick, L., Holschneider, D. P., & Mayer, E. A. (2008). Studying the Brain-Gut Axis with Pharmacological Imaging. Annals of the New York Academy of Sciences, 1144(1), 256-264. doi:10.1196/annals.1418.025

Zhao, L. (2013). The gut microbiota and obesity: from correlation to causality. Nature Reviews Microbiology, 11(9), 639-647. doi:10.1038/nrmicro3089

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record