- -

Radiomicrobiomics: Advancing Along the Gut-brain Axis Through Big Data Analysis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Radiomicrobiomics: Advancing Along the Gut-brain Axis Through Big Data Analysis

Show simple item record

Files in this item

dc.contributor.author De Santis, Silvia es_ES
dc.contributor.author Moratal, David es_ES
dc.contributor.author Canals, Santiago es_ES
dc.date.accessioned 2021-02-13T04:31:51Z
dc.date.available 2021-02-13T04:31:51Z
dc.date.issued 2019-04-01 es_ES
dc.identifier.issn 0306-4522 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161202
dc.description.abstract [EN] The gut-brain axis communicates the brain with the gut microbiota, a bidirectional conduit that has received increasing attention in recent years thanks to its emerging role in brain development and function. Alterations in microbiota composition have been associated to neurological and psychiatric disorders, and several studies suggest that the immune system plays a fundamental role in the gut-brain interaction. Recent advances in brain imaging and in microbiome sequencing have generated a large amount of information, yet the data from both these sources need to be combined efficiently to extract biological meaning, and any diagnostic and/or prognostic benefit from these tools. In addition, the causal nature of the gut-brain interaction remains to be fully established, and preclinical findings translated to humans. In this "Perspective" article, we discuss recent efforts to combine data on the gut microbiota with the features that can be obtained from the conversion of brain images into mineable data. The subsequent analysis of these data for diagnostic and prognostic purposes is an approach we call radiomicrobiomics and it holds tremendous potential to enhance our understanding of this fascinating connection. es_ES
dc.description.sponsorship These studies were supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under grants BFU2015-64380-C2-1-R (S.C.) and BFU2015-64380-C2-2-R (D.M.). This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 668863. S. C. acknowledges financial support from the Spanish State Research Agency, through the "Severo Ochoa" Programme for Centres of Excellence in R&D (ref. SEV-2013-0317). D.M. acknowledges financial support from the Conselleria d'Educacio, Investigacio, Cultura i Esport, Generalitat Valenciana (grant AEST/2017/013). S.D.S was supported by a NARSAD Young Investigator Grant (Grant #: 25104). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Neuroscience es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Advanced MRI es_ES
dc.subject Microbiota es_ES
dc.subject Machine learning es_ES
dc.subject Big data es_ES
dc.subject Gut-brain axis es_ES
dc.subject Radiomicrobiomics es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Radiomicrobiomics: Advancing Along the Gut-brain Axis Through Big Data Analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.neuroscience.2017.11.055 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/668863/EU/Systems Biology of Alcohol Addiction: Modeling and validating disease state networks in human and animal brains for understanding pathophysiolgy, predicting outcomes and improving therapy/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-1-R/ES/TRATAR LA ENFERMEDAD RESINTONIZANDO LA DINAMICA DE LAS REDES CEREBRALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2013-0317/ES/-/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BBRF//25104/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AEST%2F2017%2F013/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation De Santis, S.; Moratal, D.; Canals, S. (2019). Radiomicrobiomics: Advancing Along the Gut-brain Axis Through Big Data Analysis. Neuroscience. 403:145-149. https://doi.org/10.1016/j.neuroscience.2017.11.055 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.neuroscience.2017.11.055 es_ES
dc.description.upvformatpinicio 145 es_ES
dc.description.upvformatpfin 149 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 403 es_ES
dc.identifier.pmid 29237568 es_ES
dc.relation.pasarela S\405766 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Brain and Behavior Research Foundation es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ahluwalia, V., Wade, J. B., Heuman, D. M., Hammeke, T. A., Sanyal, A. J., Sterling, R. K., … Bajaj, J. S. (2014). Enhancement of functional connectivity, working memory and inhibitory control on multi-modal brain MR imaging with Rifaximin in Cirrhosis: Implications for the gut-liver-brain axis. Metabolic Brain Disease, 29(4), 1017-1025. doi:10.1007/s11011-014-9507-6 es_ES
dc.description.references Ahluwalia, V., Betrapally, N. S., Hylemon, P. B., White, M. B., Gillevet, P. M., Unser, A. B., … Bajaj, J. S. (2016). Impaired Gut-Liver-Brain Axis in Patients with Cirrhosis. Scientific Reports, 6(1). doi:10.1038/srep26800 es_ES
dc.description.references Assaf, Y., Freidlin, R. Z., Rohde, G. K., & Basser, P. J. (2004). New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magnetic Resonance in Medicine, 52(5), 965-978. doi:10.1002/mrm.20274 es_ES
dc.description.references Bajaj, J. S., Ahluwalia, V., Steinberg, J. L., Hobgood, S., Boling, P. A., Godschalk, M., … Wade, J. B. (2016). Elderly patients have an altered gut-brain axis regardless of the presence of cirrhosis. Scientific Reports, 6(1). doi:10.1038/srep38481 es_ES
dc.description.references Barazany, D., Basser, P. J., & Assaf, Y. (2009). In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain, 132(5), 1210-1220. doi:10.1093/brain/awp042 es_ES
dc.description.references Basser, P. J., Mattiello, J., & Lebihan, D. (1994). Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo. Journal of Magnetic Resonance, Series B, 103(3), 247-254. doi:10.1006/jmrb.1994.1037 es_ES
dc.description.references Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186-198. doi:10.1038/nrn2575 es_ES
dc.description.references Costello, E. K., Lauber, C. L., Hamady, M., Fierer, N., Gordon, J. I., & Knight, R. (2009). Bacterial Community Variation in Human Body Habitats Across Space and Time. Science, 326(5960), 1694-1697. doi:10.1126/science.1177486 es_ES
dc.description.references De Santis, S., Assaf, Y., Jeurissen, B., Jones, D. K., & Roebroeck, A. (2016). T 1 relaxometry of crossing fibres in the human brain. NeuroImage, 141, 133-142. doi:10.1016/j.neuroimage.2016.07.037 es_ES
dc.description.references De Santis S, Granberg T, Ouellette R, Treaba CA, Fan Q, Herranz E, Mainero C, Toschi N (2017) Early axonal damage in normal appearing white matter in Multiple Sclerosis: novel insights from multi-shell diffusion MRI. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, July 11–15. es_ES
dc.description.references Dinan, T. G., & Cryan, J. F. (2012). Regulation of the stress response by the gut microbiota: Implications for psychoneuroendocrinology. Psychoneuroendocrinology, 37(9), 1369-1378. doi:10.1016/j.psyneuen.2012.03.007 es_ES
dc.description.references Dinan, T. G., & Cryan, J. F. (2016). Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. The Journal of Physiology, 595(2), 489-503. doi:10.1113/jp273106 es_ES
dc.description.references Dinan, T. G., & Cryan, J. F. (2017). Brain–gut–microbiota axis — mood, metabolism and behaviour. Nature Reviews Gastroenterology & Hepatology, 14(2), 69-70. doi:10.1038/nrgastro.2016.200 es_ES
dc.description.references El Aidy, S., Dinan, T. G., & Cryan, J. F. (2014). Immune modulation of the brain-gut-microbe axis. Frontiers in Microbiology, 5. doi:10.3389/fmicb.2014.00146 es_ES
dc.description.references Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278(2), 563-577. doi:10.1148/radiol.2015151169 es_ES
dc.description.references Gonzalez, A., & Knight, R. (2012). Advancing analytical algorithms and pipelines for billions of microbial sequences. Current Opinion in Biotechnology, 23(1), 64-71. doi:10.1016/j.copbio.2011.11.028 es_ES
dc.description.references González, I., Cao, K.-A. L., Davis, M. J., & Déjean, S. (2012). Visualising associations between paired ‘omics’ data sets. BioData Mining, 5(1). doi:10.1186/1756-0381-5-19 es_ES
dc.description.references Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21(4), 424-430. doi:10.1097/wco.0b013e328306f2c5 es_ES
dc.description.references Jespersen, S. N., Kroenke, C. D., Østergaard, L., Ackerman, J. J. H., & Yablonskiy, D. A. (2007). Modeling dendrite density from magnetic resonance diffusion measurements. NeuroImage, 34(4), 1473-1486. doi:10.1016/j.neuroimage.2006.10.037 es_ES
dc.description.references Kamada, N., Chen, G. Y., Inohara, N., & Núñez, G. (2013). Control of pathogens and pathobionts by the gut microbiota. Nature Immunology, 14(7), 685-690. doi:10.1038/ni.2608 es_ES
dc.description.references Kelly, J. R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., … Dinan, T. G. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109-118. doi:10.1016/j.jpsychires.2016.07.019 es_ES
dc.description.references Layeghifard, M., Hwang, D. M., & Guttman, D. S. (2017). Disentangling Interactions in the Microbiome: A Network Perspective. Trends in Microbiology, 25(3), 217-228. doi:10.1016/j.tim.2016.11.008 es_ES
dc.description.references Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences, 15(10), 483-506. doi:10.1016/j.tics.2011.08.003 es_ES
dc.description.references Mottershead, J. P., Schmierer, K., Clemence, M., Thornton, J. S., Scaravilli, F., Barker, G. J., … Miller, D. H. (2003). High field MRI correlates of myelin content and axonal density in multiple sclerosis. Journal of Neurology, 250(11), 1293-1301. doi:10.1007/s00415-003-0192-3 es_ES
dc.description.references Ochoa-Repáraz, J., & Kasper, L. H. (2017). The influence of gut-derived CD39 regulatory T cells in CNS demyelinating disease. Translational Research, 179, 126-138. doi:10.1016/j.trsl.2016.07.016 es_ES
dc.description.references Rintala, A., Pietilä, S., Munukka, E., Eerola, E., Pursiheimo, J.-P., Laiho, A., … Huovinen, P. (2017). Gut Microbiota Analysis Results Are Highly Dependent on the 16S rRNA Gene Target Region, Whereas the Impact of DNA Extraction Is Minor. Journal of Biomolecular Techniques : JBT, 28(1), 19-30. doi:10.7171/jbt.17-2801-003 es_ES
dc.description.references Sled, J. G., & Pike, G. B. (2000). Quantitative Interpretation of Magnetization Transfer in Spoiled Gradient Echo MRI Sequences. Journal of Magnetic Resonance, 145(1), 24-36. doi:10.1006/jmre.2000.2059 es_ES
dc.description.references Smith, S. M., Vidaurre, D., Beckmann, C. F., Glasser, M. F., Jenkinson, M., Miller, K. L., … Van Essen, D. C. (2013). Functional connectomics from resting-state fMRI. Trends in Cognitive Sciences, 17(12), 666-682. doi:10.1016/j.tics.2013.09.016 es_ES
dc.description.references Sporns, O., & Zwi, J. D. (2004). The Small World of the Cerebral Cortex. Neuroinformatics, 2(2), 145-162. doi:10.1385/ni:2:2:145 es_ES
dc.description.references Tillisch, K., & Labus, J. S. (2014). Neuroimaging the Microbiome-Gut–Brain Axis. Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease, 405-416. doi:10.1007/978-1-4939-0897-4_18 es_ES
dc.description.references Tillisch, K., Wang, Z., Kilpatrick, L., Holschneider, D. P., & Mayer, E. A. (2008). Studying the Brain-Gut Axis with Pharmacological Imaging. Annals of the New York Academy of Sciences, 1144(1), 256-264. doi:10.1196/annals.1418.025 es_ES
dc.description.references Zhao, L. (2013). The gut microbiota and obesity: from correlation to causality. Nature Reviews Microbiology, 11(9), 639-647. doi:10.1038/nrmicro3089 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


This item appears in the following Collection(s)

Show simple item record