Bai, Z., Su, Y.: SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 26(3), 640–659 (2005)
Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W., Karpeyev, D., Kaushik, D., Knepley, M., May, D., McInnes, L.C., Mills, R., Munson, T., Rupp, K., Sanan, P., Smith, B., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Technical report ANL-95/11—revision 3.10, Argonne National Laboratory (2018)
Betcke, T., Kressner, D.: Perturbation, extraction and refinement of invariant pairs for matrix polynomials. Linear Algebra Appl. 435(3), 514–536 (2011)
[+]
Bai, Z., Su, Y.: SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 26(3), 640–659 (2005)
Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W., Karpeyev, D., Kaushik, D., Knepley, M., May, D., McInnes, L.C., Mills, R., Munson, T., Rupp, K., Sanan, P., Smith, B., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Technical report ANL-95/11—revision 3.10, Argonne National Laboratory (2018)
Betcke, T., Kressner, D.: Perturbation, extraction and refinement of invariant pairs for matrix polynomials. Linear Algebra Appl. 435(3), 514–536 (2011)
Betcke, T., Voss, H.: A Jacobi–Davidson-type projection method for nonlinear eigenvalue problems. Future Gen. Comput. Syst. 20(3), 363–372 (2004)
Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: a collection of nonlinear eigenvalue problems. ACM Trans. Math. Softw. 39(2), 7:1–7:28 (2013)
Campos, C., Roman, J.E.: Parallel Krylov solvers for the polynomial eigenvalue problem in SLEPc. SIAM J. Sci. Comput. 38(5), S385–S411 (2016)
Effenberger, C.: Robust successive computation of eigenpairs for nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 34(3), 1231–1256 (2013)
Effenberger, C., Kressner, D.: Chebyshev interpolation for nonlinear eigenvalue problems. BIT 52(4), 933–951 (2012)
Fokkema, D.R., Sleijpen, G.L.G., van der Vorst, H.A.: Jacobi–Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20(1), 94–125 (1998)
Guo, J.S., Lin, W.W., Wang, C.S.: Numerical solutions for large sparse quadratic eigenvalue problems. Linear Algebra Appl. 225, 57–89 (1995)
Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)
Higham, N.J., Al-Mohy, A.H.: Computing matrix functions. Acta Numer. 19, 159–208 (2010)
Higham, N.J., Mackey, D.S., Tisseur, F.: The conditioning of linearizations of matrix polynomials. SIAM J. Matrix Anal. Appl. 28(4), 1005–1028 (2006)
Hochbruck, M., Lochel, D.: A multilevel Jacobi–Davidson method for polynomial PDE eigenvalue problems arising in plasma physics. SIAM J. Sci. Comput. 32(6), 3151–3169 (2010)
Hochstenbach, M.E., Sleijpen, G.L.G.: Harmonic and refined Rayleigh–Ritz for the polynomial eigenvalue problem. Numer. Linear Algebra Appl. 15(1), 35–54 (2008)
Huang, T.M., Hwang, F.N., Lai, S.H., Wang, W., Wei, Z.H.: A parallel polynomial Jacobi–Davidson approach for dissipative acoustic eigenvalue problems. Comput. Fluids 45(1), 207–214 (2011)
Hwang, F.N., Wei, Z.H., Huang, T.M., Wang, W.: A parallel additive Schwarz preconditioned Jacobi–Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation. J.Comput. Phys. 229(8), 2932–2947 (2010)
Kressner, D.: A block Newton method for nonlinear eigenvalue problems. Numer. Math. 114, 355–372 (2009)
Kressner, D., Roman, J.E.: Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis. Numer. Linear Algebra Appl. 21(4), 569–588 (2014)
Lancaster, P.: Linearization of regular matrix polynomials. Electron. J. Linear Algebra 17, 21–27 (2008)
Matsuo, Y., Guo, H., Arbenz, P.: Experiments on a parallel nonlinear Jacobi–Davidson algorithm. Procedia Comput. Sci. 29, 565–575 (2014)
Meerbergen, K.: Locking and restarting quadratic eigenvalue solvers. SIAM J. Sci. Comput. 22(5), 1814–1839 (2001)
Roman, J.E., Campos, C., Romero, E., Tomas, A.: SLEPc users manual. Technical report DSIC-II/24/02—Revision 3.10, D. Sistemes Informàtics i Computació, Universitat Politècnica de València (2018)
Romero, E., Roman, J.E.: A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc. ACM Trans. Math. Softw. 40(2), 13:1–13:29 (2014)
Rommes, J., Martins, N.: Computing transfer function dominant poles of large-scale second-order dynamical systems. SIAM J. Sci. Comput. 30(4), 2137–2157 (2008)
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM Publications, Philadelphia (2003)
Sensiau, C., Nicoud, F., van Gijzen, M., van Leeuwen, J.W.: A comparison of solvers for quadratic eigenvalue problems from combustion. Int. J. Numer. Methods Fluids 56(8), 1481–1488 (2008)
Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17(2), 401–425 (1996)
Sleijpen, G.L.G., Booten, A.G.L., Fokkema, D.R., van der Vorst, H.A.: Jacobi–Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36(3), 595–633 (1996)
Sleijpen, G.L.G., van der Vorst, H.A., Meijerink, E.: Efficient expansion of subspaces in the Jacobi–Davidson method for standard and generalized eigenproblems. Electron. Trans. Numer. Anal. 7, 75–89 (1998)
Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235–286 (2001)
van Gijzen, M.B., Raeven, F.: The parallel computation of the smallest eigenpair of an acoustic problem with damping. Int. J. Numer. Methods Eng. 45(6), 765–777 (1999)
van Noorden, T., Rommes, J.: Computing a partial generalized real Schur form using the Jacobi–Davidson method. Numer. Linear Algebra Appl. 14(3), 197–215 (2007)
Voss, H.: A Jacobi–Davidson method for nonlinear and nonsymmetric eigenproblems. Comput. Struct. 85(17–18), 1284–1292 (2007)
[-]