- -

A polynomial Jacobi-Davidson solver with support for non-monomial bases and deflation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A polynomial Jacobi-Davidson solver with support for non-monomial bases and deflation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Campos, Carmen es_ES
dc.contributor.author Jose E. Roman es_ES
dc.date.accessioned 2021-02-13T04:32:01Z
dc.date.available 2021-02-13T04:32:01Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 0006-3835 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161207
dc.description.abstract [EN] Large-scale polynomial eigenvalue problems can be solved by Krylov methods operating on an equivalent linear eigenproblem (linearization) of size d center dot n where d is the polynomial degree and n is the problem size, or by projection methods that keep the computation in the n-dimensional space. Jacobi-Davidson belongs to the latter class of methods, and, since it is a preconditioned eigensolver, it may be competitive in cases where explicitly computing a matrix factorization is exceedingly expensive. However, a fully fledged implementation of polynomial Jacobi-Davidson has to consider several issues, including deflation to compute more than one eigenpair, use of non-monomial bases for the case of large degree polynomials, and handling of complex eigenvalues when computing in real arithmetic. We discuss these aspects and present computational results of a parallel implementation in the SLEPc library. es_ES
dc.description.sponsorship This work was supported by Agencia Estatal de Investigación (AEI) under Grant TIN2016-75985-P, which includes European Commission ERDF funds. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof BIT Numerical Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Polynomial eigenvalue problem es_ES
dc.subject Jacobi-Davidson es_ES
dc.subject Non-monomial bases es_ES
dc.subject SLEPc es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title A polynomial Jacobi-Davidson solver with support for non-monomial bases and deflation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10543-019-00778-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-75985-P/ES/SOLVERS DE VALORES PROPIOS ALTAMENTE ESCALABLES EN EL CONTEXTO DE LA BIBLIOTECA SLEPC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107379RB-I00/ES/ALGORITMOS PARALELOS Y SOFTWARE PARA METODOS ALGEBRAICOS EN ANALISIS DE DATOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Campos, C.; Jose E. Roman (2020). A polynomial Jacobi-Davidson solver with support for non-monomial bases and deflation. BIT Numerical Mathematics. 60(2):295-318. https://doi.org/10.1007/s10543-019-00778-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10543-019-00778-z es_ES
dc.description.upvformatpinicio 295 es_ES
dc.description.upvformatpfin 318 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 60 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\425587 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bai, Z., Su, Y.: SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 26(3), 640–659 (2005) es_ES
dc.description.references Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W., Karpeyev, D., Kaushik, D., Knepley, M., May, D., McInnes, L.C., Mills, R., Munson, T., Rupp, K., Sanan, P., Smith, B., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Technical report ANL-95/11—revision 3.10, Argonne National Laboratory (2018) es_ES
dc.description.references Betcke, T., Kressner, D.: Perturbation, extraction and refinement of invariant pairs for matrix polynomials. Linear Algebra Appl. 435(3), 514–536 (2011) es_ES
dc.description.references Betcke, T., Voss, H.: A Jacobi–Davidson-type projection method for nonlinear eigenvalue problems. Future Gen. Comput. Syst. 20(3), 363–372 (2004) es_ES
dc.description.references Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: a collection of nonlinear eigenvalue problems. ACM Trans. Math. Softw. 39(2), 7:1–7:28 (2013) es_ES
dc.description.references Campos, C., Roman, J.E.: Parallel Krylov solvers for the polynomial eigenvalue problem in SLEPc. SIAM J. Sci. Comput. 38(5), S385–S411 (2016) es_ES
dc.description.references Effenberger, C.: Robust successive computation of eigenpairs for nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 34(3), 1231–1256 (2013) es_ES
dc.description.references Effenberger, C., Kressner, D.: Chebyshev interpolation for nonlinear eigenvalue problems. BIT 52(4), 933–951 (2012) es_ES
dc.description.references Fokkema, D.R., Sleijpen, G.L.G., van der Vorst, H.A.: Jacobi–Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20(1), 94–125 (1998) es_ES
dc.description.references Guo, J.S., Lin, W.W., Wang, C.S.: Numerical solutions for large sparse quadratic eigenvalue problems. Linear Algebra Appl. 225, 57–89 (1995) es_ES
dc.description.references Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005) es_ES
dc.description.references Higham, N.J., Al-Mohy, A.H.: Computing matrix functions. Acta Numer. 19, 159–208 (2010) es_ES
dc.description.references Higham, N.J., Mackey, D.S., Tisseur, F.: The conditioning of linearizations of matrix polynomials. SIAM J. Matrix Anal. Appl. 28(4), 1005–1028 (2006) es_ES
dc.description.references Hochbruck, M., Lochel, D.: A multilevel Jacobi–Davidson method for polynomial PDE eigenvalue problems arising in plasma physics. SIAM J. Sci. Comput. 32(6), 3151–3169 (2010) es_ES
dc.description.references Hochstenbach, M.E., Sleijpen, G.L.G.: Harmonic and refined Rayleigh–Ritz for the polynomial eigenvalue problem. Numer. Linear Algebra Appl. 15(1), 35–54 (2008) es_ES
dc.description.references Huang, T.M., Hwang, F.N., Lai, S.H., Wang, W., Wei, Z.H.: A parallel polynomial Jacobi–Davidson approach for dissipative acoustic eigenvalue problems. Comput. Fluids 45(1), 207–214 (2011) es_ES
dc.description.references Hwang, F.N., Wei, Z.H., Huang, T.M., Wang, W.: A parallel additive Schwarz preconditioned Jacobi–Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation. J.Comput. Phys. 229(8), 2932–2947 (2010) es_ES
dc.description.references Kressner, D.: A block Newton method for nonlinear eigenvalue problems. Numer. Math. 114, 355–372 (2009) es_ES
dc.description.references Kressner, D., Roman, J.E.: Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis. Numer. Linear Algebra Appl. 21(4), 569–588 (2014) es_ES
dc.description.references Lancaster, P.: Linearization of regular matrix polynomials. Electron. J. Linear Algebra 17, 21–27 (2008) es_ES
dc.description.references Matsuo, Y., Guo, H., Arbenz, P.: Experiments on a parallel nonlinear Jacobi–Davidson algorithm. Procedia Comput. Sci. 29, 565–575 (2014) es_ES
dc.description.references Meerbergen, K.: Locking and restarting quadratic eigenvalue solvers. SIAM J. Sci. Comput. 22(5), 1814–1839 (2001) es_ES
dc.description.references Roman, J.E., Campos, C., Romero, E., Tomas, A.: SLEPc users manual. Technical report DSIC-II/24/02—Revision 3.10, D. Sistemes Informàtics i Computació, Universitat Politècnica de València (2018) es_ES
dc.description.references Romero, E., Roman, J.E.: A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc. ACM Trans. Math. Softw. 40(2), 13:1–13:29 (2014) es_ES
dc.description.references Rommes, J., Martins, N.: Computing transfer function dominant poles of large-scale second-order dynamical systems. SIAM J. Sci. Comput. 30(4), 2137–2157 (2008) es_ES
dc.description.references Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM Publications, Philadelphia (2003) es_ES
dc.description.references Sensiau, C., Nicoud, F., van Gijzen, M., van Leeuwen, J.W.: A comparison of solvers for quadratic eigenvalue problems from combustion. Int. J. Numer. Methods Fluids 56(8), 1481–1488 (2008) es_ES
dc.description.references Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17(2), 401–425 (1996) es_ES
dc.description.references Sleijpen, G.L.G., Booten, A.G.L., Fokkema, D.R., van der Vorst, H.A.: Jacobi–Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36(3), 595–633 (1996) es_ES
dc.description.references Sleijpen, G.L.G., van der Vorst, H.A., Meijerink, E.: Efficient expansion of subspaces in the Jacobi–Davidson method for standard and generalized eigenproblems. Electron. Trans. Numer. Anal. 7, 75–89 (1998) es_ES
dc.description.references Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235–286 (2001) es_ES
dc.description.references van Gijzen, M.B., Raeven, F.: The parallel computation of the smallest eigenpair of an acoustic problem with damping. Int. J. Numer. Methods Eng. 45(6), 765–777 (1999) es_ES
dc.description.references van Noorden, T., Rommes, J.: Computing a partial generalized real Schur form using the Jacobi–Davidson method. Numer. Linear Algebra Appl. 14(3), 197–215 (2007) es_ES
dc.description.references Voss, H.: A Jacobi–Davidson method for nonlinear and nonsymmetric eigenproblems. Comput. Struct. 85(17–18), 1284–1292 (2007) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem