Mostrar el registro sencillo del ítem
dc.contributor.author | Campos, Carmen | es_ES |
dc.contributor.author | Jose E. Roman | es_ES |
dc.date.accessioned | 2021-02-13T04:32:01Z | |
dc.date.available | 2021-02-13T04:32:01Z | |
dc.date.issued | 2020-06 | es_ES |
dc.identifier.issn | 0006-3835 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161207 | |
dc.description.abstract | [EN] Large-scale polynomial eigenvalue problems can be solved by Krylov methods operating on an equivalent linear eigenproblem (linearization) of size d center dot n where d is the polynomial degree and n is the problem size, or by projection methods that keep the computation in the n-dimensional space. Jacobi-Davidson belongs to the latter class of methods, and, since it is a preconditioned eigensolver, it may be competitive in cases where explicitly computing a matrix factorization is exceedingly expensive. However, a fully fledged implementation of polynomial Jacobi-Davidson has to consider several issues, including deflation to compute more than one eigenpair, use of non-monomial bases for the case of large degree polynomials, and handling of complex eigenvalues when computing in real arithmetic. We discuss these aspects and present computational results of a parallel implementation in the SLEPc library. | es_ES |
dc.description.sponsorship | This work was supported by Agencia Estatal de Investigación (AEI) under Grant TIN2016-75985-P, which includes European Commission ERDF funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | BIT Numerical Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Polynomial eigenvalue problem | es_ES |
dc.subject | Jacobi-Davidson | es_ES |
dc.subject | Non-monomial bases | es_ES |
dc.subject | SLEPc | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | A polynomial Jacobi-Davidson solver with support for non-monomial bases and deflation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10543-019-00778-z | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2016-75985-P/ES/SOLVERS DE VALORES PROPIOS ALTAMENTE ESCALABLES EN EL CONTEXTO DE LA BIBLIOTECA SLEPC/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107379RB-I00/ES/ALGORITMOS PARALELOS Y SOFTWARE PARA METODOS ALGEBRAICOS EN ANALISIS DE DATOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Campos, C.; Jose E. Roman (2020). A polynomial Jacobi-Davidson solver with support for non-monomial bases and deflation. BIT Numerical Mathematics. 60(2):295-318. https://doi.org/10.1007/s10543-019-00778-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10543-019-00778-z | es_ES |
dc.description.upvformatpinicio | 295 | es_ES |
dc.description.upvformatpfin | 318 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 60 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\425587 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Bai, Z., Su, Y.: SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 26(3), 640–659 (2005) | es_ES |
dc.description.references | Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W., Karpeyev, D., Kaushik, D., Knepley, M., May, D., McInnes, L.C., Mills, R., Munson, T., Rupp, K., Sanan, P., Smith, B., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Technical report ANL-95/11—revision 3.10, Argonne National Laboratory (2018) | es_ES |
dc.description.references | Betcke, T., Kressner, D.: Perturbation, extraction and refinement of invariant pairs for matrix polynomials. Linear Algebra Appl. 435(3), 514–536 (2011) | es_ES |
dc.description.references | Betcke, T., Voss, H.: A Jacobi–Davidson-type projection method for nonlinear eigenvalue problems. Future Gen. Comput. Syst. 20(3), 363–372 (2004) | es_ES |
dc.description.references | Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: a collection of nonlinear eigenvalue problems. ACM Trans. Math. Softw. 39(2), 7:1–7:28 (2013) | es_ES |
dc.description.references | Campos, C., Roman, J.E.: Parallel Krylov solvers for the polynomial eigenvalue problem in SLEPc. SIAM J. Sci. Comput. 38(5), S385–S411 (2016) | es_ES |
dc.description.references | Effenberger, C.: Robust successive computation of eigenpairs for nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 34(3), 1231–1256 (2013) | es_ES |
dc.description.references | Effenberger, C., Kressner, D.: Chebyshev interpolation for nonlinear eigenvalue problems. BIT 52(4), 933–951 (2012) | es_ES |
dc.description.references | Fokkema, D.R., Sleijpen, G.L.G., van der Vorst, H.A.: Jacobi–Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20(1), 94–125 (1998) | es_ES |
dc.description.references | Guo, J.S., Lin, W.W., Wang, C.S.: Numerical solutions for large sparse quadratic eigenvalue problems. Linear Algebra Appl. 225, 57–89 (1995) | es_ES |
dc.description.references | Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005) | es_ES |
dc.description.references | Higham, N.J., Al-Mohy, A.H.: Computing matrix functions. Acta Numer. 19, 159–208 (2010) | es_ES |
dc.description.references | Higham, N.J., Mackey, D.S., Tisseur, F.: The conditioning of linearizations of matrix polynomials. SIAM J. Matrix Anal. Appl. 28(4), 1005–1028 (2006) | es_ES |
dc.description.references | Hochbruck, M., Lochel, D.: A multilevel Jacobi–Davidson method for polynomial PDE eigenvalue problems arising in plasma physics. SIAM J. Sci. Comput. 32(6), 3151–3169 (2010) | es_ES |
dc.description.references | Hochstenbach, M.E., Sleijpen, G.L.G.: Harmonic and refined Rayleigh–Ritz for the polynomial eigenvalue problem. Numer. Linear Algebra Appl. 15(1), 35–54 (2008) | es_ES |
dc.description.references | Huang, T.M., Hwang, F.N., Lai, S.H., Wang, W., Wei, Z.H.: A parallel polynomial Jacobi–Davidson approach for dissipative acoustic eigenvalue problems. Comput. Fluids 45(1), 207–214 (2011) | es_ES |
dc.description.references | Hwang, F.N., Wei, Z.H., Huang, T.M., Wang, W.: A parallel additive Schwarz preconditioned Jacobi–Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation. J.Comput. Phys. 229(8), 2932–2947 (2010) | es_ES |
dc.description.references | Kressner, D.: A block Newton method for nonlinear eigenvalue problems. Numer. Math. 114, 355–372 (2009) | es_ES |
dc.description.references | Kressner, D., Roman, J.E.: Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis. Numer. Linear Algebra Appl. 21(4), 569–588 (2014) | es_ES |
dc.description.references | Lancaster, P.: Linearization of regular matrix polynomials. Electron. J. Linear Algebra 17, 21–27 (2008) | es_ES |
dc.description.references | Matsuo, Y., Guo, H., Arbenz, P.: Experiments on a parallel nonlinear Jacobi–Davidson algorithm. Procedia Comput. Sci. 29, 565–575 (2014) | es_ES |
dc.description.references | Meerbergen, K.: Locking and restarting quadratic eigenvalue solvers. SIAM J. Sci. Comput. 22(5), 1814–1839 (2001) | es_ES |
dc.description.references | Roman, J.E., Campos, C., Romero, E., Tomas, A.: SLEPc users manual. Technical report DSIC-II/24/02—Revision 3.10, D. Sistemes Informàtics i Computació, Universitat Politècnica de València (2018) | es_ES |
dc.description.references | Romero, E., Roman, J.E.: A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc. ACM Trans. Math. Softw. 40(2), 13:1–13:29 (2014) | es_ES |
dc.description.references | Rommes, J., Martins, N.: Computing transfer function dominant poles of large-scale second-order dynamical systems. SIAM J. Sci. Comput. 30(4), 2137–2157 (2008) | es_ES |
dc.description.references | Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM Publications, Philadelphia (2003) | es_ES |
dc.description.references | Sensiau, C., Nicoud, F., van Gijzen, M., van Leeuwen, J.W.: A comparison of solvers for quadratic eigenvalue problems from combustion. Int. J. Numer. Methods Fluids 56(8), 1481–1488 (2008) | es_ES |
dc.description.references | Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17(2), 401–425 (1996) | es_ES |
dc.description.references | Sleijpen, G.L.G., Booten, A.G.L., Fokkema, D.R., van der Vorst, H.A.: Jacobi–Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36(3), 595–633 (1996) | es_ES |
dc.description.references | Sleijpen, G.L.G., van der Vorst, H.A., Meijerink, E.: Efficient expansion of subspaces in the Jacobi–Davidson method for standard and generalized eigenproblems. Electron. Trans. Numer. Anal. 7, 75–89 (1998) | es_ES |
dc.description.references | Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235–286 (2001) | es_ES |
dc.description.references | van Gijzen, M.B., Raeven, F.: The parallel computation of the smallest eigenpair of an acoustic problem with damping. Int. J. Numer. Methods Eng. 45(6), 765–777 (1999) | es_ES |
dc.description.references | van Noorden, T., Rommes, J.: Computing a partial generalized real Schur form using the Jacobi–Davidson method. Numer. Linear Algebra Appl. 14(3), 197–215 (2007) | es_ES |
dc.description.references | Voss, H.: A Jacobi–Davidson method for nonlinear and nonsymmetric eigenproblems. Comput. Struct. 85(17–18), 1284–1292 (2007) | es_ES |