- -

Impact of processing and intestinal conditions on in vitro digestion of Chia (Salvia hispanica) seeds and derivatives

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Impact of processing and intestinal conditions on in vitro digestion of Chia (Salvia hispanica) seeds and derivatives

Show full item record

Calvo-Lerma, J.; Paz-Yépez, C.; Asensio-Grau, A.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2020). Impact of processing and intestinal conditions on in vitro digestion of Chia (Salvia hispanica) seeds and derivatives. Foods. 9(3):1-13. https://doi.org/10.3390/foods9030290

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161208

Files in this item

Item Metadata

Title: Impact of processing and intestinal conditions on in vitro digestion of Chia (Salvia hispanica) seeds and derivatives
Author: Calvo-Lerma, Joaquim Paz-Yépez, Carolina Asensio-Grau, Andrea Heredia Gutiérrez, Ana Belén Andrés Grau, Ana María
UPV Unit: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Issued date:
Abstract:
[EN] Chia seeds present with an excellent nutrient profile, including polyunsaturated fat, protein, fibre and bioactive compounds, which make them a potential food or ingredient to bring beneficial health effects. However, ...[+]
Subjects: Chia , Chia seeds , Chia flour , Sprouting , Milling , Lipolysis , Proteolysis , Antioxidant activity , In vitro digestion , Pancreatic insufficiency
Copyrigths: Reconocimiento (by)
Source:
Foods. (issn: 2304-8158 )
DOI: 10.3390/foods9030290
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/foods9030290
Project ID:
info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F102/
Thanks:
This research was funded by Conselleria de Educacio i Investigacio de la Generalitat Valenciana, by the post-doctoral grant given to Joaquim Calvo-Lerma (Grant number APOSTD 2019-102).
Type: Artículo

References

Capitani, M. I., Spotorno, V., Nolasco, S. M., & Tomás, M. C. (2012). Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT - Food Science and Technology, 45(1), 94-102. doi:10.1016/j.lwt.2011.07.012

Zettel, V., & Hitzmann, B. (2018). Applications of chia (Salvia hispanica L.) in food products. Trends in Food Science & Technology, 80, 43-50. doi:10.1016/j.tifs.2018.07.011

Reyes-Caudillo, E., Tecante, A., & Valdivia-López, M. A. (2008). Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chemistry, 107(2), 656-663. doi:10.1016/j.foodchem.2007.08.062 [+]
Capitani, M. I., Spotorno, V., Nolasco, S. M., & Tomás, M. C. (2012). Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT - Food Science and Technology, 45(1), 94-102. doi:10.1016/j.lwt.2011.07.012

Zettel, V., & Hitzmann, B. (2018). Applications of chia (Salvia hispanica L.) in food products. Trends in Food Science & Technology, 80, 43-50. doi:10.1016/j.tifs.2018.07.011

Reyes-Caudillo, E., Tecante, A., & Valdivia-López, M. A. (2008). Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chemistry, 107(2), 656-663. doi:10.1016/j.foodchem.2007.08.062

Muñoz, L. A., Cobos, A., Diaz, O., & Aguilera, J. M. (2012). Chia seeds: Microstructure, mucilage extraction and hydration. Journal of Food Engineering, 108(1), 216-224. doi:10.1016/j.jfoodeng.2011.06.037

Inglett, G. E., Chen, D., Liu, S. X., & Lee, S. (2014). Pasting and rheological properties of oat products dry-blended with ground chia seeds. LWT - Food Science and Technology, 55(1), 148-156. doi:10.1016/j.lwt.2013.07.011

Pellegrini, M., Lucas-Gonzalez, R., Fernández-López, J., Ricci, A., Pérez-Álvarez, J. A., Sterzo, C. L., & Viuda-Martos, M. (2017). Bioaccessibility of polyphenolic compounds of six quinoa seeds during in vitro gastrointestinal digestion. Journal of Functional Foods, 38, 77-88. doi:10.1016/j.jff.2017.08.042

Zieliński, H., Frias, J., Piskuła, M. K., Kozłowska, H., & Vidal-Valverde, C. (2006). The effect of germination process on the superoxide dismutase-like activity and thiamine, riboflavin and mineral contents of rapeseeds. Food Chemistry, 99(3), 516-520. doi:10.1016/j.foodchem.2005.08.014

KYLEN, A. M., & McCREADY, R. M. (1975). NUTRIENTS IN SEEDS AND SPROUTS OF ALFALFA, LENTILS, MUNG BEANS AND SOYBEANS. Journal of Food Science, 40(5), 1008-1009. doi:10.1111/j.1365-2621.1975.tb02254.x

Grundy, M. M.-L., Lapsley, K., & Ellis, P. R. (2016). A review of the impact of processing on nutrient bioaccessibility and digestion of almonds. International Journal of Food Science & Technology, 51(9), 1937-1946. doi:10.1111/ijfs.13192

Calvo-Lerma, J., Fornés-Ferrer, V., Heredia, A., & Andrés, A. (2019). In vitro digestion models to assess lipolysis: The impact of the simulated conditions of gastric and intestinal pH, bile salts and digestive fluids. Food Research International, 125, 108511. doi:10.1016/j.foodres.2019.108511

Humbert, L., Rainteau, D., Tuvignon, N., Wolf, C., Seksik, P., Laugier, R., & Carrière, F. (2018). Postprandial bile acid levels in intestine and plasma reveal altered biliary circulation in chronic pancreatitis patients. Journal of Lipid Research, 59(11), 2202-2213. doi:10.1194/jlr.m084830

Gelfond, D., Ma, C., Semler, J., & Borowitz, D. (2012). Intestinal pH and Gastrointestinal Transit Profiles in Cystic Fibrosis Patients Measured by Wireless Motility Capsule. Digestive Diseases and Sciences, 58(8), 2275-2281. doi:10.1007/s10620-012-2209-1

Robinson, P. J., Smith, A. L., & Sly, P. D. (1990). Duodenal pH in cystic fibrosis and its relationship to fat malabsorption. Digestive Diseases and Sciences, 35(10), 1299-1304. doi:10.1007/bf01536423

Harries, J. T., Muller, D. P., McCollum, J. P., Lipson, A., Roma, E., & Norman, A. P. (1979). Intestinal bile salts in cystic fibrosis: studies in the patient and experimental animal. Archives of Disease in Childhood, 54(1), 19-24. doi:10.1136/adc.54.1.19

Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2018). Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. Journal of Functional Foods, 46, 579-586. doi:10.1016/j.jff.2018.05.025

Asensio-Grau, A., Calvo-Lerma, J., Heredia, A., & Andrés, A. (2018). Fat digestibility in meat products: influence of food structure and gastrointestinal conditions. International Journal of Food Sciences and Nutrition, 70(5), 530-539. doi:10.1080/09637486.2018.1542665

Paz-Yépez, C., Peinado, I., Heredia, A., & Andrés, A. (2019). Influence of particle size and intestinal conditions on in vitro lipid and protein digestibility of walnuts and peanuts. Food Research International, 119, 951-959. doi:10.1016/j.foodres.2018.11.014

Paz-Yépez, C., Peinado, I., Heredia, A., & Andrés, A. (2019). Lipids digestibility and polyphenols release under in vitro digestion of dark, milk and white chocolate. Journal of Functional Foods, 52, 196-203. doi:10.1016/j.jff.2018.10.028

Calvo-Lerma, J., Fornés-Ferrer, V., Heredia, A., & Andrés, A. (2018). In Vitro Digestion of Lipids in Real Foods: Influence of Lipid Organization Within the Food Matrix and Interactions with Nonlipid Components. Journal of Food Science, 83(10), 2629-2637. doi:10.1111/1750-3841.14343

Ixtaina, V. Y., Martínez, M. L., Spotorno, V., Mateo, C. M., Maestri, D. M., Diehl, B. W. K., … Tomás, M. C. (2011). Characterization of chia seed oils obtained by pressing and solvent extraction. Journal of Food Composition and Analysis, 24(2), 166-174. doi:10.1016/j.jfca.2010.08.006

Pająk, P., Socha, R., Broniek, J., Królikowska, K., & Fortuna, T. (2019). Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chemistry, 275, 69-76. doi:10.1016/j.foodchem.2018.09.081

Mandalari, G., Parker, M., Grundy, M., Grassby, T., Smeriglio, A., Bisignano, C., … Wilde, P. (2018). Understanding the Effect of Particle Size and Processing on Almond Lipid Bioaccessibility through Microstructural Analysis: From Mastication to Faecal Collection. Nutrients, 10(2), 213. doi:10.3390/nu10020213

Aburub, A., Fischer, M., Camilleri, M., Semler, J. R., & Fadda, H. M. (2018). Comparison of pH and motility of the small intestine of healthy subjects and patients with symptomatic constipation using the wireless motility capsule. International Journal of Pharmaceutics, 544(1), 158-164. doi:10.1016/j.ijpharm.2018.04.031

Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j

Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., … Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(4), 991-1014. doi:10.1038/s41596-018-0119-1

Lamothe, S., Azimy, N., Bazinet, L., Couillard, C., & Britten, M. (2014). Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food Funct., 5(10), 2621-2631. doi:10.1039/c4fo00203b

Bax, M.-L., Aubry, L., Ferreira, C., Daudin, J.-D., Gatellier, P., Rémond, D., & Santé-Lhoutellier, V. (2012). Cooking Temperature Is a Key Determinant of in Vitro Meat Protein Digestion Rate: Investigation of Underlying Mechanisms. Journal of Agricultural and Food Chemistry, 60(10), 2569-2576. doi:10.1021/jf205280y

Lamothe, S., Corbeil, M.-M., Turgeon, S. L., & Britten, M. (2012). Influence of cheese matrix on lipid digestion in a simulated gastro-intestinal environment. Food & Function, 3(7), 724. doi:10.1039/c2fo10256k

Barrera, C., Betoret, N., Corell, P., & Fito, P. (2009). Effect of osmotic dehydration on the stabilization of calcium-fortified apple slices (var. Granny Smith): Influence of operating variables on process kinetics and compositional changes. Journal of Food Engineering, 92(4), 416-424. doi:10.1016/j.jfoodeng.2008.12.034

Noël, L., Carl, M., Vastel, C., & Guérin, T. (2008). Determination of sodium, potassium, calcium and magnesium content in milk products by flame atomic absorption spectrometry (FAAS): A joint ISO/IDF collaborative study. International Dairy Journal, 18(9), 899-904. doi:10.1016/j.idairyj.2008.01.003

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 152-178. doi:10.1016/s0076-6879(99)99017-1

Antolovich, M., Prenzler, P. D., Patsalides, E., McDonald, S., & Robards, K. (2001). Methods for testing antioxidant activity. The Analyst, 127(1), 183-198. doi:10.1039/b009171p

Hu, M., McClements, D. J., & Decker, E. A. (2003). Impact of Whey Protein Emulsifiers on the Oxidative Stability of Salmon Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 51(5), 1435-1439. doi:10.1021/jf0203794

Guo, Q., Ye, A., Lad, M., Ferrua, M., Dalgleish, D., & Singh, H. (2015). Disintegration kinetics of food gels during gastric digestion and its role on gastric emptying: an in vitro analysis. Food & Function, 6(3), 756-764. doi:10.1039/c4fo00700j

Ju, Z. Y., Hettiarachchy, N. S., & Rath, N. (2001). Extraction, denaturation and hydrophobic Properties of Rice Flour Proteins. Journal of Food Science, 66(2), 229-232. doi:10.1111/j.1365-2621.2001.tb11322.x

MOSTAFA, M., RAHMA, E., & RADY, A. (1987). Chemical and nutritional changes in soybean during germination. Food Chemistry, 23(4), 257-275. doi:10.1016/0308-8146(87)90113-0

Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., & Galieni, A. (2019). Sprouted Grains: A Comprehensive Review. Nutrients, 11(2), 421. doi:10.3390/nu11020421

Guzmán-Ortiz, F. A., San Martín-Martínez, E., Valverde, M. E., Rodríguez-Aza, Y., Berríos, J. D. J., & Mora-Escobedo, R. (2017). Profile analysis and correlation across phenolic compounds, isoflavones and antioxidant capacity during germination of soybeans (Glycine max L.). CyTA - Journal of Food, 15(4), 516-524. doi:10.1080/19476337.2017.1302995

Zhu, Y., Hsu, W. H., & Hollis, J. H. (2013). The Impact of Food Viscosity on Eating Rate, Subjective Appetite, Glycemic Response and Gastric Emptying Rate. PLoS ONE, 8(6), e67482. doi:10.1371/journal.pone.0067482

Logan, K., Wright, A. J., & Goff, H. D. (2015). Correlating the structure and in vitro digestion viscosities of different pectin fibers to in vivo human satiety. Food & Function, 6(1), 62-70. doi:10.1039/c4fo00543k

Desnuelle, P., & Savary, P. (1963). Specificities of lipases. Journal of Lipid Research, 4(4), 369-384. doi:10.1016/s0022-2275(20)40278-0

Cui, L., Gao, L., Zheng, M., Li, J., Zhang, L., Wu, Y., … Huang, D. (2019). Bioaccessibility of short chain chlorinated paraffins in meat and seafood. Science of The Total Environment, 668, 996-1003. doi:10.1016/j.scitotenv.2019.03.043

Benarous, K., Djeridane, A., Kameli, A., & Yousfi, M. (2013). Inhibition of Candida rugosa Lipase by Secondary Metabolites Extracts of Three Algerian Plants and their Antioxydant Activities. Current Enzyme Inhibition, 9(1), 75-82. doi:10.2174/1573408011309010010

TAYLOR, J. R. N., NOVELLIE, L., & LIEBENBERG, N. V. D. W. (1985). Protein Body Degradation in the Starchy Endosperm of Germinating Sorghum. Journal of Experimental Botany, 36(8), 1287-1295. doi:10.1093/jxb/36.8.1287

Hamaker, B. R., Kirleis, A. W., Mertz, E. T., & Axtell, J. D. (1986). Effect of cooking on the protein profiles and in vitro digestibility of sorghum and maize. Journal of Agricultural and Food Chemistry, 34(4), 647-649. doi:10.1021/jf00070a014

James, W. P. ., Branch, W. ., & Southgate, D. A. . (1978). CALCIUM BINDING BY DIETARY FIBRE. The Lancet, 311(8065), 638-639. doi:10.1016/s0140-6736(78)91141-8

Hu, M., Li, Y., Decker, E. A., & McClements, D. J. (2010). Role of calcium and calcium-binding agents on the lipase digestibility of emulsified lipids using an in vitro digestion model. Food Hydrocolloids, 24(8), 719-725. doi:10.1016/j.foodhyd.2010.03.010

Govers, M. J., & Van der Meet, R. (1993). Effects of dietary calcium and phosphate on the intestinal interactions between calcium, phosphate, fatty acids, and bile acids. Gut, 34(3), 365-370. doi:10.1136/gut.34.3.365

Rein, M. J., Renouf, M., Cruz-Hernandez, C., Actis-Goretta, L., Thakkar, S. K., & da Silva Pinto, M. (2013). Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. British Journal of Clinical Pharmacology, 75(3), 588-602. doi:10.1111/j.1365-2125.2012.04425.x

Rahman, M. J., de Camargo, A. C., & Shahidi, F. (2017). Phenolic and polyphenolic profiles of chia seeds and their in vitro biological activities. Journal of Functional Foods, 35, 622-634. doi:10.1016/j.jff.2017.06.044

Akillioglu, H. G., & Karakaya, S. (2010). Changes in total phenols, total flavonoids, and antioxidant activities of common beans and pinto beans after soaking, cooking, and in vitro digestion process. Food Science and Biotechnology, 19(3), 633-639. doi:10.1007/s10068-010-0089-8

Tagliazucchi, D., Verzelloni, E., Bertolini, D., & Conte, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120(2), 599-606. doi:10.1016/j.foodchem.2009.10.030

Hidalgo, M., Sánchez-Moreno, C., & de Pascual-Teresa, S. (2010). Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chemistry, 121(3), 691-696. doi:10.1016/j.foodchem.2009.12.097

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record