Mostrar el registro sencillo del ítem
dc.contributor.author | Calvo-Lerma, Joaquim | es_ES |
dc.contributor.author | Paz-Yépez, Carolina | es_ES |
dc.contributor.author | Asensio-Grau, Andrea | es_ES |
dc.contributor.author | Heredia Gutiérrez, Ana Belén | es_ES |
dc.contributor.author | Andrés Grau, Ana María | es_ES |
dc.date.accessioned | 2021-02-13T04:32:03Z | |
dc.date.available | 2021-02-13T04:32:03Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.issn | 2304-8158 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161208 | |
dc.description.abstract | [EN] Chia seeds present with an excellent nutrient profile, including polyunsaturated fat, protein, fibre and bioactive compounds, which make them a potential food or ingredient to bring beneficial health effects. However, their tough structure could mean that these seeds remain hardly disrupted during digestion, thus preventing the release and digestibility of nutrients. In the present study, different chia products (seeds, whole flour, partially defatted flour and sprouts) were assessed in terms of proteolysis, lipolysis, calcium and polyphenols bioaccessibility and antioxidant activity. In vitro digestions were performed supporting standard intestinal (pH 7, bile salts concentration 10 mM) and altered (pH 6, bile salts concentration 1 mM) conditions. The altered conditions significantly reduced lipolysis, but not proteolysis. Regarding the food matrix, compared to the chia seeds, whole and partially defatted flour increased the hydrolysis of lipids and protein, relating to reduced particle size. Sprouting had an enhancing effect on proteolysis but prevented lipolysis. Calcium bioaccessibility dropped in all the samples in the two intestinal conditions. The digestion process led to increased polyphenols bioaccessibility in all the structures, but reduced antioxidant activity except in the milled structures. In conclusion, milling should be applied to chia seeds prior to consumption in cases where enhancing the potential uptake of macro and micronutrients is targeted, and sprouting is suitable to enhance protein digestibility and reduce lipolysis. | es_ES |
dc.description.sponsorship | This research was funded by Conselleria de Educacio i Investigacio de la Generalitat Valenciana, by the post-doctoral grant given to Joaquim Calvo-Lerma (Grant number APOSTD 2019-102). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Foods | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Chia | es_ES |
dc.subject | Chia seeds | es_ES |
dc.subject | Chia flour | es_ES |
dc.subject | Sprouting | es_ES |
dc.subject | Milling | es_ES |
dc.subject | Lipolysis | es_ES |
dc.subject | Proteolysis | es_ES |
dc.subject | Antioxidant activity | es_ES |
dc.subject | In vitro digestion | es_ES |
dc.subject | Pancreatic insufficiency | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Impact of processing and intestinal conditions on in vitro digestion of Chia (Salvia hispanica) seeds and derivatives | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/foods9030290 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F102/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.description.bibliographicCitation | Calvo-Lerma, J.; Paz-Yépez, C.; Asensio-Grau, A.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2020). Impact of processing and intestinal conditions on in vitro digestion of Chia (Salvia hispanica) seeds and derivatives. Foods. 9(3):1-13. https://doi.org/10.3390/foods9030290 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/foods9030290 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.pmid | 32150813 | es_ES |
dc.identifier.pmcid | PMC7143566 | es_ES |
dc.relation.pasarela | S\405369 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Capitani, M. I., Spotorno, V., Nolasco, S. M., & Tomás, M. C. (2012). Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT - Food Science and Technology, 45(1), 94-102. doi:10.1016/j.lwt.2011.07.012 | es_ES |
dc.description.references | Zettel, V., & Hitzmann, B. (2018). Applications of chia (Salvia hispanica L.) in food products. Trends in Food Science & Technology, 80, 43-50. doi:10.1016/j.tifs.2018.07.011 | es_ES |
dc.description.references | Reyes-Caudillo, E., Tecante, A., & Valdivia-López, M. A. (2008). Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chemistry, 107(2), 656-663. doi:10.1016/j.foodchem.2007.08.062 | es_ES |
dc.description.references | Muñoz, L. A., Cobos, A., Diaz, O., & Aguilera, J. M. (2012). Chia seeds: Microstructure, mucilage extraction and hydration. Journal of Food Engineering, 108(1), 216-224. doi:10.1016/j.jfoodeng.2011.06.037 | es_ES |
dc.description.references | Inglett, G. E., Chen, D., Liu, S. X., & Lee, S. (2014). Pasting and rheological properties of oat products dry-blended with ground chia seeds. LWT - Food Science and Technology, 55(1), 148-156. doi:10.1016/j.lwt.2013.07.011 | es_ES |
dc.description.references | Pellegrini, M., Lucas-Gonzalez, R., Fernández-López, J., Ricci, A., Pérez-Álvarez, J. A., Sterzo, C. L., & Viuda-Martos, M. (2017). Bioaccessibility of polyphenolic compounds of six quinoa seeds during in vitro gastrointestinal digestion. Journal of Functional Foods, 38, 77-88. doi:10.1016/j.jff.2017.08.042 | es_ES |
dc.description.references | Zieliński, H., Frias, J., Piskuła, M. K., Kozłowska, H., & Vidal-Valverde, C. (2006). The effect of germination process on the superoxide dismutase-like activity and thiamine, riboflavin and mineral contents of rapeseeds. Food Chemistry, 99(3), 516-520. doi:10.1016/j.foodchem.2005.08.014 | es_ES |
dc.description.references | KYLEN, A. M., & McCREADY, R. M. (1975). NUTRIENTS IN SEEDS AND SPROUTS OF ALFALFA, LENTILS, MUNG BEANS AND SOYBEANS. Journal of Food Science, 40(5), 1008-1009. doi:10.1111/j.1365-2621.1975.tb02254.x | es_ES |
dc.description.references | Grundy, M. M.-L., Lapsley, K., & Ellis, P. R. (2016). A review of the impact of processing on nutrient bioaccessibility and digestion of almonds. International Journal of Food Science & Technology, 51(9), 1937-1946. doi:10.1111/ijfs.13192 | es_ES |
dc.description.references | Calvo-Lerma, J., Fornés-Ferrer, V., Heredia, A., & Andrés, A. (2019). In vitro digestion models to assess lipolysis: The impact of the simulated conditions of gastric and intestinal pH, bile salts and digestive fluids. Food Research International, 125, 108511. doi:10.1016/j.foodres.2019.108511 | es_ES |
dc.description.references | Humbert, L., Rainteau, D., Tuvignon, N., Wolf, C., Seksik, P., Laugier, R., & Carrière, F. (2018). Postprandial bile acid levels in intestine and plasma reveal altered biliary circulation in chronic pancreatitis patients. Journal of Lipid Research, 59(11), 2202-2213. doi:10.1194/jlr.m084830 | es_ES |
dc.description.references | Gelfond, D., Ma, C., Semler, J., & Borowitz, D. (2012). Intestinal pH and Gastrointestinal Transit Profiles in Cystic Fibrosis Patients Measured by Wireless Motility Capsule. Digestive Diseases and Sciences, 58(8), 2275-2281. doi:10.1007/s10620-012-2209-1 | es_ES |
dc.description.references | Robinson, P. J., Smith, A. L., & Sly, P. D. (1990). Duodenal pH in cystic fibrosis and its relationship to fat malabsorption. Digestive Diseases and Sciences, 35(10), 1299-1304. doi:10.1007/bf01536423 | es_ES |
dc.description.references | Harries, J. T., Muller, D. P., McCollum, J. P., Lipson, A., Roma, E., & Norman, A. P. (1979). Intestinal bile salts in cystic fibrosis: studies in the patient and experimental animal. Archives of Disease in Childhood, 54(1), 19-24. doi:10.1136/adc.54.1.19 | es_ES |
dc.description.references | Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2018). Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. Journal of Functional Foods, 46, 579-586. doi:10.1016/j.jff.2018.05.025 | es_ES |
dc.description.references | Asensio-Grau, A., Calvo-Lerma, J., Heredia, A., & Andrés, A. (2018). Fat digestibility in meat products: influence of food structure and gastrointestinal conditions. International Journal of Food Sciences and Nutrition, 70(5), 530-539. doi:10.1080/09637486.2018.1542665 | es_ES |
dc.description.references | Paz-Yépez, C., Peinado, I., Heredia, A., & Andrés, A. (2019). Influence of particle size and intestinal conditions on in vitro lipid and protein digestibility of walnuts and peanuts. Food Research International, 119, 951-959. doi:10.1016/j.foodres.2018.11.014 | es_ES |
dc.description.references | Paz-Yépez, C., Peinado, I., Heredia, A., & Andrés, A. (2019). Lipids digestibility and polyphenols release under in vitro digestion of dark, milk and white chocolate. Journal of Functional Foods, 52, 196-203. doi:10.1016/j.jff.2018.10.028 | es_ES |
dc.description.references | Calvo-Lerma, J., Fornés-Ferrer, V., Heredia, A., & Andrés, A. (2018). In Vitro Digestion of Lipids in Real Foods: Influence of Lipid Organization Within the Food Matrix and Interactions with Nonlipid Components. Journal of Food Science, 83(10), 2629-2637. doi:10.1111/1750-3841.14343 | es_ES |
dc.description.references | Ixtaina, V. Y., Martínez, M. L., Spotorno, V., Mateo, C. M., Maestri, D. M., Diehl, B. W. K., … Tomás, M. C. (2011). Characterization of chia seed oils obtained by pressing and solvent extraction. Journal of Food Composition and Analysis, 24(2), 166-174. doi:10.1016/j.jfca.2010.08.006 | es_ES |
dc.description.references | Pająk, P., Socha, R., Broniek, J., Królikowska, K., & Fortuna, T. (2019). Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chemistry, 275, 69-76. doi:10.1016/j.foodchem.2018.09.081 | es_ES |
dc.description.references | Mandalari, G., Parker, M., Grundy, M., Grassby, T., Smeriglio, A., Bisignano, C., … Wilde, P. (2018). Understanding the Effect of Particle Size and Processing on Almond Lipid Bioaccessibility through Microstructural Analysis: From Mastication to Faecal Collection. Nutrients, 10(2), 213. doi:10.3390/nu10020213 | es_ES |
dc.description.references | Aburub, A., Fischer, M., Camilleri, M., Semler, J. R., & Fadda, H. M. (2018). Comparison of pH and motility of the small intestine of healthy subjects and patients with symptomatic constipation using the wireless motility capsule. International Journal of Pharmaceutics, 544(1), 158-164. doi:10.1016/j.ijpharm.2018.04.031 | es_ES |
dc.description.references | Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j | es_ES |
dc.description.references | Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., … Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(4), 991-1014. doi:10.1038/s41596-018-0119-1 | es_ES |
dc.description.references | Lamothe, S., Azimy, N., Bazinet, L., Couillard, C., & Britten, M. (2014). Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food Funct., 5(10), 2621-2631. doi:10.1039/c4fo00203b | es_ES |
dc.description.references | Bax, M.-L., Aubry, L., Ferreira, C., Daudin, J.-D., Gatellier, P., Rémond, D., & Santé-Lhoutellier, V. (2012). Cooking Temperature Is a Key Determinant of in Vitro Meat Protein Digestion Rate: Investigation of Underlying Mechanisms. Journal of Agricultural and Food Chemistry, 60(10), 2569-2576. doi:10.1021/jf205280y | es_ES |
dc.description.references | Lamothe, S., Corbeil, M.-M., Turgeon, S. L., & Britten, M. (2012). Influence of cheese matrix on lipid digestion in a simulated gastro-intestinal environment. Food & Function, 3(7), 724. doi:10.1039/c2fo10256k | es_ES |
dc.description.references | Barrera, C., Betoret, N., Corell, P., & Fito, P. (2009). Effect of osmotic dehydration on the stabilization of calcium-fortified apple slices (var. Granny Smith): Influence of operating variables on process kinetics and compositional changes. Journal of Food Engineering, 92(4), 416-424. doi:10.1016/j.jfoodeng.2008.12.034 | es_ES |
dc.description.references | Noël, L., Carl, M., Vastel, C., & Guérin, T. (2008). Determination of sodium, potassium, calcium and magnesium content in milk products by flame atomic absorption spectrometry (FAAS): A joint ISO/IDF collaborative study. International Dairy Journal, 18(9), 899-904. doi:10.1016/j.idairyj.2008.01.003 | es_ES |
dc.description.references | Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 152-178. doi:10.1016/s0076-6879(99)99017-1 | es_ES |
dc.description.references | Antolovich, M., Prenzler, P. D., Patsalides, E., McDonald, S., & Robards, K. (2001). Methods for testing antioxidant activity. The Analyst, 127(1), 183-198. doi:10.1039/b009171p | es_ES |
dc.description.references | Hu, M., McClements, D. J., & Decker, E. A. (2003). Impact of Whey Protein Emulsifiers on the Oxidative Stability of Salmon Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 51(5), 1435-1439. doi:10.1021/jf0203794 | es_ES |
dc.description.references | Guo, Q., Ye, A., Lad, M., Ferrua, M., Dalgleish, D., & Singh, H. (2015). Disintegration kinetics of food gels during gastric digestion and its role on gastric emptying: an in vitro analysis. Food & Function, 6(3), 756-764. doi:10.1039/c4fo00700j | es_ES |
dc.description.references | Ju, Z. Y., Hettiarachchy, N. S., & Rath, N. (2001). Extraction, denaturation and hydrophobic Properties of Rice Flour Proteins. Journal of Food Science, 66(2), 229-232. doi:10.1111/j.1365-2621.2001.tb11322.x | es_ES |
dc.description.references | MOSTAFA, M., RAHMA, E., & RADY, A. (1987). Chemical and nutritional changes in soybean during germination. Food Chemistry, 23(4), 257-275. doi:10.1016/0308-8146(87)90113-0 | es_ES |
dc.description.references | Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., & Galieni, A. (2019). Sprouted Grains: A Comprehensive Review. Nutrients, 11(2), 421. doi:10.3390/nu11020421 | es_ES |
dc.description.references | Guzmán-Ortiz, F. A., San Martín-Martínez, E., Valverde, M. E., Rodríguez-Aza, Y., Berríos, J. D. J., & Mora-Escobedo, R. (2017). Profile analysis and correlation across phenolic compounds, isoflavones and antioxidant capacity during germination of soybeans (Glycine max L.). CyTA - Journal of Food, 15(4), 516-524. doi:10.1080/19476337.2017.1302995 | es_ES |
dc.description.references | Zhu, Y., Hsu, W. H., & Hollis, J. H. (2013). The Impact of Food Viscosity on Eating Rate, Subjective Appetite, Glycemic Response and Gastric Emptying Rate. PLoS ONE, 8(6), e67482. doi:10.1371/journal.pone.0067482 | es_ES |
dc.description.references | Logan, K., Wright, A. J., & Goff, H. D. (2015). Correlating the structure and in vitro digestion viscosities of different pectin fibers to in vivo human satiety. Food & Function, 6(1), 62-70. doi:10.1039/c4fo00543k | es_ES |
dc.description.references | Desnuelle, P., & Savary, P. (1963). Specificities of lipases. Journal of Lipid Research, 4(4), 369-384. doi:10.1016/s0022-2275(20)40278-0 | es_ES |
dc.description.references | Cui, L., Gao, L., Zheng, M., Li, J., Zhang, L., Wu, Y., … Huang, D. (2019). Bioaccessibility of short chain chlorinated paraffins in meat and seafood. Science of The Total Environment, 668, 996-1003. doi:10.1016/j.scitotenv.2019.03.043 | es_ES |
dc.description.references | Benarous, K., Djeridane, A., Kameli, A., & Yousfi, M. (2013). Inhibition of Candida rugosa Lipase by Secondary Metabolites Extracts of Three Algerian Plants and their Antioxydant Activities. Current Enzyme Inhibition, 9(1), 75-82. doi:10.2174/1573408011309010010 | es_ES |
dc.description.references | TAYLOR, J. R. N., NOVELLIE, L., & LIEBENBERG, N. V. D. W. (1985). Protein Body Degradation in the Starchy Endosperm of Germinating Sorghum. Journal of Experimental Botany, 36(8), 1287-1295. doi:10.1093/jxb/36.8.1287 | es_ES |
dc.description.references | Hamaker, B. R., Kirleis, A. W., Mertz, E. T., & Axtell, J. D. (1986). Effect of cooking on the protein profiles and in vitro digestibility of sorghum and maize. Journal of Agricultural and Food Chemistry, 34(4), 647-649. doi:10.1021/jf00070a014 | es_ES |
dc.description.references | James, W. P. ., Branch, W. ., & Southgate, D. A. . (1978). CALCIUM BINDING BY DIETARY FIBRE. The Lancet, 311(8065), 638-639. doi:10.1016/s0140-6736(78)91141-8 | es_ES |
dc.description.references | Hu, M., Li, Y., Decker, E. A., & McClements, D. J. (2010). Role of calcium and calcium-binding agents on the lipase digestibility of emulsified lipids using an in vitro digestion model. Food Hydrocolloids, 24(8), 719-725. doi:10.1016/j.foodhyd.2010.03.010 | es_ES |
dc.description.references | Govers, M. J., & Van der Meet, R. (1993). Effects of dietary calcium and phosphate on the intestinal interactions between calcium, phosphate, fatty acids, and bile acids. Gut, 34(3), 365-370. doi:10.1136/gut.34.3.365 | es_ES |
dc.description.references | Rein, M. J., Renouf, M., Cruz-Hernandez, C., Actis-Goretta, L., Thakkar, S. K., & da Silva Pinto, M. (2013). Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. British Journal of Clinical Pharmacology, 75(3), 588-602. doi:10.1111/j.1365-2125.2012.04425.x | es_ES |
dc.description.references | Rahman, M. J., de Camargo, A. C., & Shahidi, F. (2017). Phenolic and polyphenolic profiles of chia seeds and their in vitro biological activities. Journal of Functional Foods, 35, 622-634. doi:10.1016/j.jff.2017.06.044 | es_ES |
dc.description.references | Akillioglu, H. G., & Karakaya, S. (2010). Changes in total phenols, total flavonoids, and antioxidant activities of common beans and pinto beans after soaking, cooking, and in vitro digestion process. Food Science and Biotechnology, 19(3), 633-639. doi:10.1007/s10068-010-0089-8 | es_ES |
dc.description.references | Tagliazucchi, D., Verzelloni, E., Bertolini, D., & Conte, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120(2), 599-606. doi:10.1016/j.foodchem.2009.10.030 | es_ES |
dc.description.references | Hidalgo, M., Sánchez-Moreno, C., & de Pascual-Teresa, S. (2010). Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chemistry, 121(3), 691-696. doi:10.1016/j.foodchem.2009.12.097 | es_ES |