- -

Impact of processing and intestinal conditions on in vitro digestion of Chia (Salvia hispanica) seeds and derivatives

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Impact of processing and intestinal conditions on in vitro digestion of Chia (Salvia hispanica) seeds and derivatives

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calvo-Lerma, Joaquim es_ES
dc.contributor.author Paz-Yépez, Carolina es_ES
dc.contributor.author Asensio-Grau, Andrea es_ES
dc.contributor.author Heredia Gutiérrez, Ana Belén es_ES
dc.contributor.author Andrés Grau, Ana María es_ES
dc.date.accessioned 2021-02-13T04:32:03Z
dc.date.available 2021-02-13T04:32:03Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 2304-8158 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161208
dc.description.abstract [EN] Chia seeds present with an excellent nutrient profile, including polyunsaturated fat, protein, fibre and bioactive compounds, which make them a potential food or ingredient to bring beneficial health effects. However, their tough structure could mean that these seeds remain hardly disrupted during digestion, thus preventing the release and digestibility of nutrients. In the present study, different chia products (seeds, whole flour, partially defatted flour and sprouts) were assessed in terms of proteolysis, lipolysis, calcium and polyphenols bioaccessibility and antioxidant activity. In vitro digestions were performed supporting standard intestinal (pH 7, bile salts concentration 10 mM) and altered (pH 6, bile salts concentration 1 mM) conditions. The altered conditions significantly reduced lipolysis, but not proteolysis. Regarding the food matrix, compared to the chia seeds, whole and partially defatted flour increased the hydrolysis of lipids and protein, relating to reduced particle size. Sprouting had an enhancing effect on proteolysis but prevented lipolysis. Calcium bioaccessibility dropped in all the samples in the two intestinal conditions. The digestion process led to increased polyphenols bioaccessibility in all the structures, but reduced antioxidant activity except in the milled structures. In conclusion, milling should be applied to chia seeds prior to consumption in cases where enhancing the potential uptake of macro and micronutrients is targeted, and sprouting is suitable to enhance protein digestibility and reduce lipolysis. es_ES
dc.description.sponsorship This research was funded by Conselleria de Educacio i Investigacio de la Generalitat Valenciana, by the post-doctoral grant given to Joaquim Calvo-Lerma (Grant number APOSTD 2019-102). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Foods es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Chia es_ES
dc.subject Chia seeds es_ES
dc.subject Chia flour es_ES
dc.subject Sprouting es_ES
dc.subject Milling es_ES
dc.subject Lipolysis es_ES
dc.subject Proteolysis es_ES
dc.subject Antioxidant activity es_ES
dc.subject In vitro digestion es_ES
dc.subject Pancreatic insufficiency es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Impact of processing and intestinal conditions on in vitro digestion of Chia (Salvia hispanica) seeds and derivatives es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/foods9030290 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F102/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Calvo-Lerma, J.; Paz-Yépez, C.; Asensio-Grau, A.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2020). Impact of processing and intestinal conditions on in vitro digestion of Chia (Salvia hispanica) seeds and derivatives. Foods. 9(3):1-13. https://doi.org/10.3390/foods9030290 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/foods9030290 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 32150813 es_ES
dc.identifier.pmcid PMC7143566 es_ES
dc.relation.pasarela S\405369 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Capitani, M. I., Spotorno, V., Nolasco, S. M., & Tomás, M. C. (2012). Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT - Food Science and Technology, 45(1), 94-102. doi:10.1016/j.lwt.2011.07.012 es_ES
dc.description.references Zettel, V., & Hitzmann, B. (2018). Applications of chia (Salvia hispanica L.) in food products. Trends in Food Science & Technology, 80, 43-50. doi:10.1016/j.tifs.2018.07.011 es_ES
dc.description.references Reyes-Caudillo, E., Tecante, A., & Valdivia-López, M. A. (2008). Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chemistry, 107(2), 656-663. doi:10.1016/j.foodchem.2007.08.062 es_ES
dc.description.references Muñoz, L. A., Cobos, A., Diaz, O., & Aguilera, J. M. (2012). Chia seeds: Microstructure, mucilage extraction and hydration. Journal of Food Engineering, 108(1), 216-224. doi:10.1016/j.jfoodeng.2011.06.037 es_ES
dc.description.references Inglett, G. E., Chen, D., Liu, S. X., & Lee, S. (2014). Pasting and rheological properties of oat products dry-blended with ground chia seeds. LWT - Food Science and Technology, 55(1), 148-156. doi:10.1016/j.lwt.2013.07.011 es_ES
dc.description.references Pellegrini, M., Lucas-Gonzalez, R., Fernández-López, J., Ricci, A., Pérez-Álvarez, J. A., Sterzo, C. L., & Viuda-Martos, M. (2017). Bioaccessibility of polyphenolic compounds of six quinoa seeds during in vitro gastrointestinal digestion. Journal of Functional Foods, 38, 77-88. doi:10.1016/j.jff.2017.08.042 es_ES
dc.description.references Zieliński, H., Frias, J., Piskuła, M. K., Kozłowska, H., & Vidal-Valverde, C. (2006). The effect of germination process on the superoxide dismutase-like activity and thiamine, riboflavin and mineral contents of rapeseeds. Food Chemistry, 99(3), 516-520. doi:10.1016/j.foodchem.2005.08.014 es_ES
dc.description.references KYLEN, A. M., & McCREADY, R. M. (1975). NUTRIENTS IN SEEDS AND SPROUTS OF ALFALFA, LENTILS, MUNG BEANS AND SOYBEANS. Journal of Food Science, 40(5), 1008-1009. doi:10.1111/j.1365-2621.1975.tb02254.x es_ES
dc.description.references Grundy, M. M.-L., Lapsley, K., & Ellis, P. R. (2016). A review of the impact of processing on nutrient bioaccessibility and digestion of almonds. International Journal of Food Science & Technology, 51(9), 1937-1946. doi:10.1111/ijfs.13192 es_ES
dc.description.references Calvo-Lerma, J., Fornés-Ferrer, V., Heredia, A., & Andrés, A. (2019). In vitro digestion models to assess lipolysis: The impact of the simulated conditions of gastric and intestinal pH, bile salts and digestive fluids. Food Research International, 125, 108511. doi:10.1016/j.foodres.2019.108511 es_ES
dc.description.references Humbert, L., Rainteau, D., Tuvignon, N., Wolf, C., Seksik, P., Laugier, R., & Carrière, F. (2018). Postprandial bile acid levels in intestine and plasma reveal altered biliary circulation in chronic pancreatitis patients. Journal of Lipid Research, 59(11), 2202-2213. doi:10.1194/jlr.m084830 es_ES
dc.description.references Gelfond, D., Ma, C., Semler, J., & Borowitz, D. (2012). Intestinal pH and Gastrointestinal Transit Profiles in Cystic Fibrosis Patients Measured by Wireless Motility Capsule. Digestive Diseases and Sciences, 58(8), 2275-2281. doi:10.1007/s10620-012-2209-1 es_ES
dc.description.references Robinson, P. J., Smith, A. L., & Sly, P. D. (1990). Duodenal pH in cystic fibrosis and its relationship to fat malabsorption. Digestive Diseases and Sciences, 35(10), 1299-1304. doi:10.1007/bf01536423 es_ES
dc.description.references Harries, J. T., Muller, D. P., McCollum, J. P., Lipson, A., Roma, E., & Norman, A. P. (1979). Intestinal bile salts in cystic fibrosis: studies in the patient and experimental animal. Archives of Disease in Childhood, 54(1), 19-24. doi:10.1136/adc.54.1.19 es_ES
dc.description.references Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2018). Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. Journal of Functional Foods, 46, 579-586. doi:10.1016/j.jff.2018.05.025 es_ES
dc.description.references Asensio-Grau, A., Calvo-Lerma, J., Heredia, A., & Andrés, A. (2018). Fat digestibility in meat products: influence of food structure and gastrointestinal conditions. International Journal of Food Sciences and Nutrition, 70(5), 530-539. doi:10.1080/09637486.2018.1542665 es_ES
dc.description.references Paz-Yépez, C., Peinado, I., Heredia, A., & Andrés, A. (2019). Influence of particle size and intestinal conditions on in vitro lipid and protein digestibility of walnuts and peanuts. Food Research International, 119, 951-959. doi:10.1016/j.foodres.2018.11.014 es_ES
dc.description.references Paz-Yépez, C., Peinado, I., Heredia, A., & Andrés, A. (2019). Lipids digestibility and polyphenols release under in vitro digestion of dark, milk and white chocolate. Journal of Functional Foods, 52, 196-203. doi:10.1016/j.jff.2018.10.028 es_ES
dc.description.references Calvo-Lerma, J., Fornés-Ferrer, V., Heredia, A., & Andrés, A. (2018). In Vitro Digestion of Lipids in Real Foods: Influence of Lipid Organization Within the Food Matrix and Interactions with Nonlipid Components. Journal of Food Science, 83(10), 2629-2637. doi:10.1111/1750-3841.14343 es_ES
dc.description.references Ixtaina, V. Y., Martínez, M. L., Spotorno, V., Mateo, C. M., Maestri, D. M., Diehl, B. W. K., … Tomás, M. C. (2011). Characterization of chia seed oils obtained by pressing and solvent extraction. Journal of Food Composition and Analysis, 24(2), 166-174. doi:10.1016/j.jfca.2010.08.006 es_ES
dc.description.references Pająk, P., Socha, R., Broniek, J., Królikowska, K., & Fortuna, T. (2019). Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chemistry, 275, 69-76. doi:10.1016/j.foodchem.2018.09.081 es_ES
dc.description.references Mandalari, G., Parker, M., Grundy, M., Grassby, T., Smeriglio, A., Bisignano, C., … Wilde, P. (2018). Understanding the Effect of Particle Size and Processing on Almond Lipid Bioaccessibility through Microstructural Analysis: From Mastication to Faecal Collection. Nutrients, 10(2), 213. doi:10.3390/nu10020213 es_ES
dc.description.references Aburub, A., Fischer, M., Camilleri, M., Semler, J. R., & Fadda, H. M. (2018). Comparison of pH and motility of the small intestine of healthy subjects and patients with symptomatic constipation using the wireless motility capsule. International Journal of Pharmaceutics, 544(1), 158-164. doi:10.1016/j.ijpharm.2018.04.031 es_ES
dc.description.references Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j es_ES
dc.description.references Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., … Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(4), 991-1014. doi:10.1038/s41596-018-0119-1 es_ES
dc.description.references Lamothe, S., Azimy, N., Bazinet, L., Couillard, C., & Britten, M. (2014). Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food Funct., 5(10), 2621-2631. doi:10.1039/c4fo00203b es_ES
dc.description.references Bax, M.-L., Aubry, L., Ferreira, C., Daudin, J.-D., Gatellier, P., Rémond, D., & Santé-Lhoutellier, V. (2012). Cooking Temperature Is a Key Determinant of in Vitro Meat Protein Digestion Rate: Investigation of Underlying Mechanisms. Journal of Agricultural and Food Chemistry, 60(10), 2569-2576. doi:10.1021/jf205280y es_ES
dc.description.references Lamothe, S., Corbeil, M.-M., Turgeon, S. L., & Britten, M. (2012). Influence of cheese matrix on lipid digestion in a simulated gastro-intestinal environment. Food & Function, 3(7), 724. doi:10.1039/c2fo10256k es_ES
dc.description.references Barrera, C., Betoret, N., Corell, P., & Fito, P. (2009). Effect of osmotic dehydration on the stabilization of calcium-fortified apple slices (var. Granny Smith): Influence of operating variables on process kinetics and compositional changes. Journal of Food Engineering, 92(4), 416-424. doi:10.1016/j.jfoodeng.2008.12.034 es_ES
dc.description.references Noël, L., Carl, M., Vastel, C., & Guérin, T. (2008). Determination of sodium, potassium, calcium and magnesium content in milk products by flame atomic absorption spectrometry (FAAS): A joint ISO/IDF collaborative study. International Dairy Journal, 18(9), 899-904. doi:10.1016/j.idairyj.2008.01.003 es_ES
dc.description.references Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 152-178. doi:10.1016/s0076-6879(99)99017-1 es_ES
dc.description.references Antolovich, M., Prenzler, P. D., Patsalides, E., McDonald, S., & Robards, K. (2001). Methods for testing antioxidant activity. The Analyst, 127(1), 183-198. doi:10.1039/b009171p es_ES
dc.description.references Hu, M., McClements, D. J., & Decker, E. A. (2003). Impact of Whey Protein Emulsifiers on the Oxidative Stability of Salmon Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 51(5), 1435-1439. doi:10.1021/jf0203794 es_ES
dc.description.references Guo, Q., Ye, A., Lad, M., Ferrua, M., Dalgleish, D., & Singh, H. (2015). Disintegration kinetics of food gels during gastric digestion and its role on gastric emptying: an in vitro analysis. Food & Function, 6(3), 756-764. doi:10.1039/c4fo00700j es_ES
dc.description.references Ju, Z. Y., Hettiarachchy, N. S., & Rath, N. (2001). Extraction, denaturation and hydrophobic Properties of Rice Flour Proteins. Journal of Food Science, 66(2), 229-232. doi:10.1111/j.1365-2621.2001.tb11322.x es_ES
dc.description.references MOSTAFA, M., RAHMA, E., & RADY, A. (1987). Chemical and nutritional changes in soybean during germination. Food Chemistry, 23(4), 257-275. doi:10.1016/0308-8146(87)90113-0 es_ES
dc.description.references Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., & Galieni, A. (2019). Sprouted Grains: A Comprehensive Review. Nutrients, 11(2), 421. doi:10.3390/nu11020421 es_ES
dc.description.references Guzmán-Ortiz, F. A., San Martín-Martínez, E., Valverde, M. E., Rodríguez-Aza, Y., Berríos, J. D. J., & Mora-Escobedo, R. (2017). Profile analysis and correlation across phenolic compounds, isoflavones and antioxidant capacity during germination of soybeans (Glycine max L.). CyTA - Journal of Food, 15(4), 516-524. doi:10.1080/19476337.2017.1302995 es_ES
dc.description.references Zhu, Y., Hsu, W. H., & Hollis, J. H. (2013). The Impact of Food Viscosity on Eating Rate, Subjective Appetite, Glycemic Response and Gastric Emptying Rate. PLoS ONE, 8(6), e67482. doi:10.1371/journal.pone.0067482 es_ES
dc.description.references Logan, K., Wright, A. J., & Goff, H. D. (2015). Correlating the structure and in vitro digestion viscosities of different pectin fibers to in vivo human satiety. Food & Function, 6(1), 62-70. doi:10.1039/c4fo00543k es_ES
dc.description.references Desnuelle, P., & Savary, P. (1963). Specificities of lipases. Journal of Lipid Research, 4(4), 369-384. doi:10.1016/s0022-2275(20)40278-0 es_ES
dc.description.references Cui, L., Gao, L., Zheng, M., Li, J., Zhang, L., Wu, Y., … Huang, D. (2019). Bioaccessibility of short chain chlorinated paraffins in meat and seafood. Science of The Total Environment, 668, 996-1003. doi:10.1016/j.scitotenv.2019.03.043 es_ES
dc.description.references Benarous, K., Djeridane, A., Kameli, A., & Yousfi, M. (2013). Inhibition of Candida rugosa Lipase by Secondary Metabolites Extracts of Three Algerian Plants and their Antioxydant Activities. Current Enzyme Inhibition, 9(1), 75-82. doi:10.2174/1573408011309010010 es_ES
dc.description.references TAYLOR, J. R. N., NOVELLIE, L., & LIEBENBERG, N. V. D. W. (1985). Protein Body Degradation in the Starchy Endosperm of Germinating Sorghum. Journal of Experimental Botany, 36(8), 1287-1295. doi:10.1093/jxb/36.8.1287 es_ES
dc.description.references Hamaker, B. R., Kirleis, A. W., Mertz, E. T., & Axtell, J. D. (1986). Effect of cooking on the protein profiles and in vitro digestibility of sorghum and maize. Journal of Agricultural and Food Chemistry, 34(4), 647-649. doi:10.1021/jf00070a014 es_ES
dc.description.references James, W. P. ., Branch, W. ., & Southgate, D. A. . (1978). CALCIUM BINDING BY DIETARY FIBRE. The Lancet, 311(8065), 638-639. doi:10.1016/s0140-6736(78)91141-8 es_ES
dc.description.references Hu, M., Li, Y., Decker, E. A., & McClements, D. J. (2010). Role of calcium and calcium-binding agents on the lipase digestibility of emulsified lipids using an in vitro digestion model. Food Hydrocolloids, 24(8), 719-725. doi:10.1016/j.foodhyd.2010.03.010 es_ES
dc.description.references Govers, M. J., & Van der Meet, R. (1993). Effects of dietary calcium and phosphate on the intestinal interactions between calcium, phosphate, fatty acids, and bile acids. Gut, 34(3), 365-370. doi:10.1136/gut.34.3.365 es_ES
dc.description.references Rein, M. J., Renouf, M., Cruz-Hernandez, C., Actis-Goretta, L., Thakkar, S. K., & da Silva Pinto, M. (2013). Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. British Journal of Clinical Pharmacology, 75(3), 588-602. doi:10.1111/j.1365-2125.2012.04425.x es_ES
dc.description.references Rahman, M. J., de Camargo, A. C., & Shahidi, F. (2017). Phenolic and polyphenolic profiles of chia seeds and their in vitro biological activities. Journal of Functional Foods, 35, 622-634. doi:10.1016/j.jff.2017.06.044 es_ES
dc.description.references Akillioglu, H. G., & Karakaya, S. (2010). Changes in total phenols, total flavonoids, and antioxidant activities of common beans and pinto beans after soaking, cooking, and in vitro digestion process. Food Science and Biotechnology, 19(3), 633-639. doi:10.1007/s10068-010-0089-8 es_ES
dc.description.references Tagliazucchi, D., Verzelloni, E., Bertolini, D., & Conte, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120(2), 599-606. doi:10.1016/j.foodchem.2009.10.030 es_ES
dc.description.references Hidalgo, M., Sánchez-Moreno, C., & de Pascual-Teresa, S. (2010). Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chemistry, 121(3), 691-696. doi:10.1016/j.foodchem.2009.12.097 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem