- -

Risk assessment in water resources planning under climate change at the Júcar River basin

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Risk assessment in water resources planning under climate change at the Júcar River basin

Mostrar el registro completo del ítem

Suárez-Almiñana, S.; Solera Solera, A.; Madrigal, J.; Andreu Álvarez, J.; Paredes Arquiola, J. (2020). Risk assessment in water resources planning under climate change at the Júcar River basin. HYDROLOGY AND EARTH SYSTEM SCIENCES. 24(11):5297-5315. https://doi.org/10.5194/hess-24-5297-2020

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161210

Ficheros en el ítem

Metadatos del ítem

Título: Risk assessment in water resources planning under climate change at the Júcar River basin
Autor: Suárez-Almiñana, Sara Solera Solera, Abel Madrigal, Jaime Andreu Álvarez, Joaquín Paredes Arquiola, Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Fecha difusión:
Resumen:
[EN] Climate change and its possible effects on water resources has become an increasingly near threat. Therefore, the study of these impacts in highly regulated systems and those suffering extreme events is essential to ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
HYDROLOGY AND EARTH SYSTEM SCIENCES. (issn: 1027-5606 )
DOI: 10.5194/hess-24-5297-2020
Editorial:
EUROPEAN GEOSCIENCES UNION
Versión del editor: https://doi.org/10.5194/hess-24-5297-2020
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/641811/EU/IMproving PRedictions and management of hydrological EXtremes/
info:eu-repo/grantAgreement/EC//ECMRWF-Copernicus-FA 2015%2FC3S_441-LOT1%2FSMHI/EU/Service for Water Indicators in Climate Change Adaptation/SWICCA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106322RB-I00/ES/REDUCCION DE LA ESCALA TEMPORAL EN LA PLANIFICACION HIDROLOGICA PARA LA GESTION DE RECURSOS Y EL MEDIO AMBIENTE/
info:eu-repo/grantAgreement/MINECO//CTM2016-77804-P/ES/ESTIMACION DEL RIESGO AMBIENTAL FRENTE A LAS SEQUIAS Y EL CAMBIO CLIMATICO/
Agradecimientos:
This research has been supported by IMproving PRedictions and management of hydrological EXtremes (IMPREX) (grant no. 641811), Service for Water Indicators in Climate Change Adaptation (SWICCA) (grant no. ECMRWF-CopernicusFA ...[+]
Tipo: Artículo

References

Andreu, J., Capilla, J., and Sanchís, E.: AQUATOOL, a generalized decision-support system for water-resources planning and operational management, J. Hydrol., 177, 269–291, https://doi.org/10.1016/0022-1694(95)02963-X, 1996.

Andreu, J., Solera, A., Capilla, J., and Polo, J.: Modelo SIMGES de Simulación de la Gestión de Recursos Hídricos, incluyendo Utilización Conjunta, Manual de usuario, versión 3.03.01, Universitat Politècnica de València, Valencia, Spain, 2007.

Andreu, J., Ferrer-Polo, J., Pérez, M. A., and Solera, A.: Decision support system for drought planning and management in the Jucar river basin, Spain, in: Proceedings of the 18th world IMACS/MODSIM Congress, 13–17 July 2009, Cairns, Australia, 3223–3229, 2009. [+]
Andreu, J., Capilla, J., and Sanchís, E.: AQUATOOL, a generalized decision-support system for water-resources planning and operational management, J. Hydrol., 177, 269–291, https://doi.org/10.1016/0022-1694(95)02963-X, 1996.

Andreu, J., Solera, A., Capilla, J., and Polo, J.: Modelo SIMGES de Simulación de la Gestión de Recursos Hídricos, incluyendo Utilización Conjunta, Manual de usuario, versión 3.03.01, Universitat Politècnica de València, Valencia, Spain, 2007.

Andreu, J., Ferrer-Polo, J., Pérez, M. A., and Solera, A.: Decision support system for drought planning and management in the Jucar river basin, Spain, in: Proceedings of the 18th world IMACS/MODSIM Congress, 13–17 July 2009, Cairns, Australia, 3223–3229, 2009.

Barranco, L., Dimas, M., Jiménez, A., and Estrada, F.: Nueva evaluación del impacto futuro del cambio climático en los recursos hídricos en España, Ingeiría Civ., 191/2008, 34–55, 2018.

Bergström, S.: The HBV Model, in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, Highlands Ranch, Colorado, USA, 443–476, 1995.

CEDEX: Estudio de los impactos del cambio climático en los recursos hídricos y las masas de agua, Ficha 1: Evaluación del impacto del cambio climático en los recursos hídricos en régimen natural, Informe Técnico Centro de Estudios Hidrográficos – CEDEX, Tomo único, clave CEDEX 42-407-1-001, Centro de Publicaciones, Secretaría General Técnica del Ministerio de Fomento, Madrid, 2010.

CEDEX: Evaluación del impacto del cambio climático en los recursos hídricos y sequías en España, Informe Técnico Centro de Estudios Hidrográficos – CEDEX, Tomo único, clave CEDEX 42-415-0-001, Centro de Publicaciones, Secretaría General Técnica del Ministerio de Fomento, Madrid, 2017.

Chatterjee, S., Daniels, M. D., Sheshukov, A. Y., and Gao, J.: Projected climate change impacts on hydrologic flow regimes in the Great Plains of Kansas, River Res. Appl., 34, 195–206, https://doi.org/10.1002/rra.3249, 2018.

CHJ: Plan Hidrológico de la Demarcación Hidrográfica del Júcar, Memoria cliclo de planificación hidrológica 2015–2021, Ministerio de Agricultura, Alimentación y Medio Ambiente, Valencia, Spain, 2015.

CHJ: Plan Especial de Sequía Demarcación Hidrográfica del Júcar, Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Valencia, Spain, 2018.

Collados-Lara, A. J., Pulido-Velazquez, D., and Pardo-Igúzquiza, E.: An integrated statistical method to generate potential future climate scenarios to analyse droughts, Water, 10, 1224, https://doi.org/10.3390/w10091224, 2018.

Cook, B. I., Miller, R. L., and Seager, R.: Dust and sea surface temperature forcing of the 1930s “Dust Bowl” drought, Geophys. Res. Lett., 35, 1–5, https://doi.org/10.1029/2008GL033486, 2008.

Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert, J.: HESS Opinions “Should we apply bias correction to global and regional climate model data?”, Hydrol. Earth Syst. Sci., 16, 3391–3404, https://doi.org/10.5194/hess-16-3391-2012, 2012.

Espadafor, M., Lorite, I. J., Gavilán, P., and Berengena, J.: An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain, Agr. Water Manage., 98, 1045–1061, https://doi.org/10.1016/j.agwat.2011.01.015, 2011.

Folton, N., Martin, E., Arnaud, P., L'Hermite, P., and Tolsa, M.: A 50-year analysis of hydrological trends and processes in a Mediterranean catchment, Hydrol. Earth Syst. Sci., 23, 2699–2714, https://doi.org/10.5194/hess-23-2699-2019, 2019.

García-Romero, L., Paredes-Arquiola, J., Solera, A., Belda, E., Andreu, J., and Sánchez-Quispe, S. T.: Optimization of the multi-start strategy of a direct-search algorithm for the calibration of different rainfall-runoff models for the water resources assessment, Water, 11, 1876, https://doi.org/10.3390/w11091876, 2019.

Grillakis, M. G., Koutroulis, A. G., Daliakopoulos, I. N., and Tsanis, I. K.: A method to preserve trends in quantile mapping bias correction of climate modeled temperature, Earth Syst. Dynam., 8, 889–900, https://doi.org/10.5194/esd-8-889-2017, 2017.

Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012.

Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration, J. Hydrol. Eng., 4, 135–143, 1999.

Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from temperature, Appl. Eng. Agric., 1, 96–99, 1985.

Haro-Monteagudo, D.: Methodology for the optimal management design of water resources system under hydrologic uncertainty, PhD thesis, Universitat Politècnica de València, Valencia, Spain, 373 pp., 2014.

Haro-Monteagudo, D., Solera, A., and Andreu, J.: Drought early warning based on optimal risk forecasts in regulated river systems: Application to the Jucar River Basin (Spain), J. Hydrol., 544, 36–45, https://doi.org/10.1016/j.jhydrol.2016.11.022, 2017.

Hernández Bedolla, J., Solera, A., Paredes Arquiola, J., and Roblero Escobar, C. X.: Análisis del cambio en las aportaciones hidrológicas en la cuenca del río Júcar a partir de 1980 y sus causas, Ing. del agua, 23, 141–155, https://doi.org/10.4995/ia.2019.10582, 2019.

Herrera, S., Fernández, J., and Gutiérrez, J. M.: Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: Assessing the effect of the interpolation methodology, Int. J. Climatol., 36, 900–908, https://doi.org/10.1002/joc.4391, 2016.

Hewitt, C., Buontempo, C., and Newton, P.: Using Climate Predictions to Better Serve Society's Needs, Eos Trans. AGU, 94, 105–107, https://doi.org/10.1002/2013EO110002, 2013.

Hundecha, Y., Arheimer, B., Donnelly, C., and Pechlivanidis, I.: A regional parameter estimation scheme for a pan-European multi-basin model, J. Hydrol. Reg. Stud., 6, 90–111, https://doi.org/10.1016/j.ejrh.2016.04.002, 2016.

IPCC: Summary for Policymakers, Climate Change 2014: Synthesis Report, in: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland, https://doi.org/10.1017/CBO9781107415324, 2014.

Kalin, L., Isik, S., Schoonover, J. E., and Lockaby, B. G.: Predicting Water Quality in Unmonitored Watersheds Using Artificial Neural Networks, J. Environ. Qual., 39, 1429–1440, https://doi.org/10.2134/jeq2009.0441, 2010.

Lemos, M. C. and Rood, R. B.: Climate projections and their impact on policy and practice, Wiley Interdisciplin. Rev. Clim. Change, 1, 670–682, https://doi.org/10.1002/wcc.71, 2010.

Madrigal, J., Solera, A., Suárez-Almiñana, S., Paredes-Arquiola, J., Andreu, J., and Sánchez-Quispe, S. T.: Skill assessment of a seasonal forecast model to predict drought events for water resource systems, J. Hydrol., 564, 574–587, https://doi.org/10.1016/j.jhydrol.2018.07.046, 2018.

Manne, D., Tachikawa, Y., Ichikawa, Y., and Yorozu, K.: Evaluation of Bias Correction Methods for Future River Discharge Projection, J. Jpn. Soc. Civ. Eng. Ser., 72, 1–16, https://doi.org/10.2208/jscejer.72.i_7, 2017.

Maraun, D.: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue, J. Climate, 2137–2143, https://doi.org/10.1175/JCLI-D-12-00821.1, 2013.

Marcos-Garcia, P., Lopez-Nicolas, A., and Pulido-Velazquez, M.: Combined use of relative drought indices to analyze climate change impact on meteorological and hydrological droughts in a Mediterranean basin, J. Hydrol., 554, 292–305, https://doi.org/10.1016/j.jhydrol.2017.09.028, 2017.

Milly, P. C. D. and Dunne, K. A.: A Hydrologic Drying Bias in Water-Resource Impact Analyses of Anthropogenic Climate Change, J. Am. Water Resour. Assoc., 53, 822–838, https://doi.org/10.1111/1752-1688.12538, 2017.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith., T. L.: Model evaluation guidelines for systematic quantifi cation of accuracy in watershed simulations, T. ASABE, 50, 885–900, 2007.

Muerth, M. J., Gauvin St-Denis, B., Ricard, S., Velázquez, J. A., Schmid, J., Minville, M., Caya, D., Chaumont, D., Ludwig, R., and Turcotte, R.: On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff, Hydrol. Earth Syst. Sci., 17, 1189–1204, https://doi.org/10.5194/hess-17-1189-2013, 2013.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models: Part 1. A discussion of principles, J. Hydrol., 10, 282–290, 1970.

Naustdalslid, J.: Climate change – The challenge of translating scientific knowledge into action, Int. J. Sustain. Dev. World Ecol., 18, 243–252, https://doi.org/10.1080/13504509.2011.572303, 2011.

Ochoa-Rivera, J. C.: Modelo Estocástico de Redes Neuronales para la Síntesis de Caudales Aplicados a la Gestión Probabilística de Sequías, PhD thesis, Universitat Politècnica de València, Valencia, Spain, 2002.

Ochoa-Rivera, J. C.: Prospecting droughts with stochastic artificial neural networks, J. Hydrol., 352, 174–180, https://doi.org/10.1016/j.jhydrol.2008.01.006, 2008.

Paredes-Arquiola, J., Solera, A., Andreu, J., and Lerma, N.: Manual técnico de la herramienta EVALHID para la evaluación de recursos hídricos, Universitat Politècnica de València, Valencia, Spain, 2012.

Pedro-Monzonís, M., Jiménez-Fernández, P., Solera, A., and Jiménez-Gavilán, P.: The use of AQUATOOL DSS applied to the System of Environmental-Economic Accounting for Water (SEEAW), J. Hydrol., 533, 1–14, https://doi.org/10.1016/j.jhydrol.2015.11.034, 2016.

Pérez-Martín, M., Thurston, W., Estrela, T., and del Amo, P.: Cambio en las series hidrológicas de los últimos 30 años y sus causas. El efecto 80, in: III Jornadas de Ingeniería del Agua (JIA 2013). La Protección Contra Los Riesgos Hídricos, 23–24 October 2013, Valencia, Spain, 527–534, 2013.

Sánchez-Quispe, S., Andreu, J., and Solera, A.: Gestión de Recursos Hídricos con Decisiones Basadas en Estimación del Riesgo, PhD thesis, Universitat Politècnica de València, Valencia, Spain, 2001.

Seager, R., Burgman, R., Kushnir, Y., Clement, A., Cook, E., Naik, N., and Miller, J.: Tropical pacific forcing of North American medieval megadroughts: Testing the concept with an atmosphere model forced by coral-reconstructed SSTs, J. Climate, 21, 6175–6190, https://doi.org/10.1175/2008JCLI2170.1, 2008.

Stagl, J. C. and Hattermann, F. F.: Impacts of climate change on the hydrological regime of the danube river and its tributaries using an ensemble of climate scenarios, Water, 7, 6139–6172, https://doi.org/10.3390/w8120566, 2015.

Stagl, J. C. and Hattermann, F. F.: Impacts of Climate Change on Riverine Ecosystems: Alterations of Ecologically Relevant Flow Dynamics in the Danube River and Its Major Tributaries, Water, 8, 566, https://doi.org/10.3390/w8120566, 2016.

Suárez-Almiñana, S., Pedro-Monzonís, M., Paredes-Arquiola, J., Andreu, J., and Solera, A.: Linking Pan-European data to the local scale for decision making for global change and water scarcity within water resources planning and management, Sci. Total Environ., 603–604, 126–139, https://doi.org/10.1016/j.scitotenv.2017.05.259, 2017.

Suárez-Almiñana, S., Solera, A., Andreu, J., and García-Romero, L.: Uncertainty analysis of climate projections in relation to historical contributions in the Júcar River Basin, Ing. del agua, 24, 89–99, https://doi.org/10.4995/Ia.2020.12149, 2020.

Switanek, B. M., Troch, A. P., Castro, L. C., Leuprecht, A., Chang, H. I., Mukherjee, R., and Demaria, M. C. E.: Scaled distribution mapping: A bias correction method that preserves raw climate model projected changes, Hydrol. Earth Syst. Sci., 21, 2649–2666, https://doi.org/10.5194/hess-21-2649-2017, 2017.

Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods, J. Hydrol., 456–457, 12–29, https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.

Teutschbein, C. and Seibert, J.: Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions, Hydrol. Earth Syst. Sci., 17, 5061–5077, https://doi.org/10.5194/hess-17-5061-2013, 2013.

Thompson, V., Dunstone, N. J., Scaife, A. A., Smith, D. M., Slingo, J. M., Brown, S., and Belcher, S. E.: High risk of unprecedented UK rainfall in the current climate, Nat. Commun., 8, 1–6, https://doi.org/10.1038/s41467-017-00275-3, 2017.

van den Hurk, B. J. J. M., Bouwer, L. M., Buontempo, C., Döscher, R., Ercin, E., Hananel, C., Hunink, J. E., Kjellström, E., Klein, B., Manez, M., Pappenberger, F., Pouget, L., Ramos, M. H., Ward, P. J., Weerts, A. H., and Wijngaard, J. B.: Improving predictions and management of hydrological extremes through climate services, Clim. Serv., 1, 6–11, https://doi.org/10.1016/j.cliser.2016.01.001, 2016.

van den Hurk, B., Hewitt, C., Jacob, D., Bessembinder, J., Doblas-Reyes, F., and Döscher, R.: The match between climate services demands and Earth System Models supplies, Clim. Serv., 12, 59–63, https://doi.org/10.1016/j.cliser.2018.11.002, 2018.

Vetter, T., Huang, S., Aich, V., Yang, T., Wang, X., Krysanova, V., and Hattermann, F.: Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents, Earth Syst. Dynam., 6, 17–43, https://doi.org/10.5194/esd-6-17-2015, 2015.

Zambrano-Bigiarini, M.: hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series, R package version 0.4-0, Zenodo, https://doi.org/10.5281/zenodo.839854, 2020.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem