- -

Risk assessment in water resources planning under climate change at the Júcar River basin

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Risk assessment in water resources planning under climate change at the Júcar River basin

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Suárez-Almiñana, Sara es_ES
dc.contributor.author Solera Solera, Abel es_ES
dc.contributor.author Madrigal, Jaime es_ES
dc.contributor.author Andreu Álvarez, Joaquín es_ES
dc.contributor.author Paredes Arquiola, Javier es_ES
dc.date.accessioned 2021-02-13T04:32:06Z
dc.date.available 2021-02-13T04:32:06Z
dc.date.issued 2020-07-14 es_ES
dc.identifier.issn 1027-5606 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161210
dc.description.abstract [EN] Climate change and its possible effects on water resources has become an increasingly near threat. Therefore, the study of these impacts in highly regulated systems and those suffering extreme events is essential to deal with them effectively. This study responds to the need for an effective method to integrate climate change projections into water planning and management analysis in order to guide the decision-making, taking into account drought risk assessments. Therefore, this document presents a general and adaptive methodology based on a modeling chain and correction processes, whose main outcomes are the impacts on future natural inflows, a drought risk indicator, and the simulation of future water storage in the water resources system (WRS). This method was applied in the Jucar River basin (JRB) due to its complexity and the multiannual drought events it suffers recurrently. The results showed a worrying decrease in future inflows, as well as a high probability (approximate to 80%) of being under 50% of total capacity of the WRS in the near future. However, the uncertainty of the results was considerable from the mid-century onwards, indicating that the skill of climate projections needs to be improved in order to obtain more reliable results. Consequently, this paper also highlights the difficulties of developing this type of method, taking partial decisions to adapt them as far as possible to the basin in an attempt to obtain clearer conclusions on climate change impact assessments. Despite the high uncertainty, the results of the JRB call for action and the tool developed can be considered as a feasible and robust method to facilitate and support decision-making in complex basins for future water planning and management. es_ES
dc.description.sponsorship This research has been supported by IMproving PRedictions and management of hydrological EXtremes (IMPREX) (grant no. 641811), Service for Water Indicators in Climate Change Adaptation (SWICCA) (grant no. ECMRWF-CopernicusFA 2015/C3S_441-LOT1/SMHI), Estimacion del Riesgo Ambiental frente a las Sequias y el cambio climatico (ERAS) (grant no. CTM2016-77804-P), and Time scale reduction on water resources and environmental planning (RESPHIRA) (grant no. PID2019-106322RB-100). es_ES
dc.language Inglés es_ES
dc.publisher EUROPEAN GEOSCIENCES UNION es_ES
dc.relation.ispartof HYDROLOGY AND EARTH SYSTEM SCIENCES es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Risk assessment in water resources planning under climate change at the Júcar River basin es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5194/hess-24-5297-2020 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/641811/EU/IMproving PRedictions and management of hydrological EXtremes/
dc.relation.projectID info:eu-repo/grantAgreement/EC//ECMRWF-Copernicus-FA 2015%2FC3S_441-LOT1%2FSMHI/EU/Service for Water Indicators in Climate Change Adaptation/SWICCA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106322RB-I00/ES/REDUCCION DE LA ESCALA TEMPORAL EN LA PLANIFICACION HIDROLOGICA PARA LA GESTION DE RECURSOS Y EL MEDIO AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2016-77804-P/ES/ESTIMACION DEL RIESGO AMBIENTAL FRENTE A LAS SEQUIAS Y EL CAMBIO CLIMATICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Suárez-Almiñana, S.; Solera Solera, A.; Madrigal, J.; Andreu Álvarez, J.; Paredes Arquiola, J. (2020). Risk assessment in water resources planning under climate change at the Júcar River basin. HYDROLOGY AND EARTH SYSTEM SCIENCES. 24(11):5297-5315. https://doi.org/10.5194/hess-24-5297-2020 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.5194/hess-24-5297-2020 es_ES
dc.description.upvformatpinicio 5297 es_ES
dc.description.upvformatpfin 5315 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\421800 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Sveriges Meteorologiska o Hydrologiska Institut, Suecia es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Andreu, J., Capilla, J., and Sanchís, E.: AQUATOOL, a generalized decision-support system for water-resources planning and operational management, J. Hydrol., 177, 269–291, https://doi.org/10.1016/0022-1694(95)02963-X, 1996. es_ES
dc.description.references Andreu, J., Solera, A., Capilla, J., and Polo, J.: Modelo SIMGES de Simulación de la Gestión de Recursos Hídricos, incluyendo Utilización Conjunta, Manual de usuario, versión 3.03.01, Universitat Politècnica de València, Valencia, Spain, 2007. es_ES
dc.description.references Andreu, J., Ferrer-Polo, J., Pérez, M. A., and Solera, A.: Decision support system for drought planning and management in the Jucar river basin, Spain, in: Proceedings of the 18th world IMACS/MODSIM Congress, 13–17 July 2009, Cairns, Australia, 3223–3229, 2009. es_ES
dc.description.references Barranco, L., Dimas, M., Jiménez, A., and Estrada, F.: Nueva evaluación del impacto futuro del cambio climático en los recursos hídricos en España, Ingeiría Civ., 191/2008, 34–55, 2018. es_ES
dc.description.references Bergström, S.: The HBV Model, in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, Highlands Ranch, Colorado, USA, 443–476, 1995. es_ES
dc.description.references CEDEX: Estudio de los impactos del cambio climático en los recursos hídricos y las masas de agua, Ficha 1: Evaluación del impacto del cambio climático en los recursos hídricos en régimen natural, Informe Técnico Centro de Estudios Hidrográficos – CEDEX, Tomo único, clave CEDEX 42-407-1-001, Centro de Publicaciones, Secretaría General Técnica del Ministerio de Fomento, Madrid, 2010. es_ES
dc.description.references CEDEX: Evaluación del impacto del cambio climático en los recursos hídricos y sequías en España, Informe Técnico Centro de Estudios Hidrográficos – CEDEX, Tomo único, clave CEDEX 42-415-0-001, Centro de Publicaciones, Secretaría General Técnica del Ministerio de Fomento, Madrid, 2017. es_ES
dc.description.references Chatterjee, S., Daniels, M. D., Sheshukov, A. Y., and Gao, J.: Projected climate change impacts on hydrologic flow regimes in the Great Plains of Kansas, River Res. Appl., 34, 195–206, https://doi.org/10.1002/rra.3249, 2018. es_ES
dc.description.references CHJ: Plan Hidrológico de la Demarcación Hidrográfica del Júcar, Memoria cliclo de planificación hidrológica 2015–2021, Ministerio de Agricultura, Alimentación y Medio Ambiente, Valencia, Spain, 2015. es_ES
dc.description.references CHJ: Plan Especial de Sequía Demarcación Hidrográfica del Júcar, Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Valencia, Spain, 2018. es_ES
dc.description.references Collados-Lara, A. J., Pulido-Velazquez, D., and Pardo-Igúzquiza, E.: An integrated statistical method to generate potential future climate scenarios to analyse droughts, Water, 10, 1224, https://doi.org/10.3390/w10091224, 2018. es_ES
dc.description.references Cook, B. I., Miller, R. L., and Seager, R.: Dust and sea surface temperature forcing of the 1930s “Dust Bowl” drought, Geophys. Res. Lett., 35, 1–5, https://doi.org/10.1029/2008GL033486, 2008. es_ES
dc.description.references Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert, J.: HESS Opinions “Should we apply bias correction to global and regional climate model data?”, Hydrol. Earth Syst. Sci., 16, 3391–3404, https://doi.org/10.5194/hess-16-3391-2012, 2012. es_ES
dc.description.references Espadafor, M., Lorite, I. J., Gavilán, P., and Berengena, J.: An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain, Agr. Water Manage., 98, 1045–1061, https://doi.org/10.1016/j.agwat.2011.01.015, 2011. es_ES
dc.description.references Folton, N., Martin, E., Arnaud, P., L'Hermite, P., and Tolsa, M.: A 50-year analysis of hydrological trends and processes in a Mediterranean catchment, Hydrol. Earth Syst. Sci., 23, 2699–2714, https://doi.org/10.5194/hess-23-2699-2019, 2019. es_ES
dc.description.references García-Romero, L., Paredes-Arquiola, J., Solera, A., Belda, E., Andreu, J., and Sánchez-Quispe, S. T.: Optimization of the multi-start strategy of a direct-search algorithm for the calibration of different rainfall-runoff models for the water resources assessment, Water, 11, 1876, https://doi.org/10.3390/w11091876, 2019. es_ES
dc.description.references Grillakis, M. G., Koutroulis, A. G., Daliakopoulos, I. N., and Tsanis, I. K.: A method to preserve trends in quantile mapping bias correction of climate modeled temperature, Earth Syst. Dynam., 8, 889–900, https://doi.org/10.5194/esd-8-889-2017, 2017. es_ES
dc.description.references Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012. es_ES
dc.description.references Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration, J. Hydrol. Eng., 4, 135–143, 1999. es_ES
dc.description.references Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from temperature, Appl. Eng. Agric., 1, 96–99, 1985. es_ES
dc.description.references Haro-Monteagudo, D.: Methodology for the optimal management design of water resources system under hydrologic uncertainty, PhD thesis, Universitat Politècnica de València, Valencia, Spain, 373 pp., 2014. es_ES
dc.description.references Haro-Monteagudo, D., Solera, A., and Andreu, J.: Drought early warning based on optimal risk forecasts in regulated river systems: Application to the Jucar River Basin (Spain), J. Hydrol., 544, 36–45, https://doi.org/10.1016/j.jhydrol.2016.11.022, 2017. es_ES
dc.description.references Hernández Bedolla, J., Solera, A., Paredes Arquiola, J., and Roblero Escobar, C. X.: Análisis del cambio en las aportaciones hidrológicas en la cuenca del río Júcar a partir de 1980 y sus causas, Ing. del agua, 23, 141–155, https://doi.org/10.4995/ia.2019.10582, 2019. es_ES
dc.description.references Herrera, S., Fernández, J., and Gutiérrez, J. M.: Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: Assessing the effect of the interpolation methodology, Int. J. Climatol., 36, 900–908, https://doi.org/10.1002/joc.4391, 2016. es_ES
dc.description.references Hewitt, C., Buontempo, C., and Newton, P.: Using Climate Predictions to Better Serve Society's Needs, Eos Trans. AGU, 94, 105–107, https://doi.org/10.1002/2013EO110002, 2013. es_ES
dc.description.references Hundecha, Y., Arheimer, B., Donnelly, C., and Pechlivanidis, I.: A regional parameter estimation scheme for a pan-European multi-basin model, J. Hydrol. Reg. Stud., 6, 90–111, https://doi.org/10.1016/j.ejrh.2016.04.002, 2016. es_ES
dc.description.references IPCC: Summary for Policymakers, Climate Change 2014: Synthesis Report, in: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland, https://doi.org/10.1017/CBO9781107415324, 2014. es_ES
dc.description.references Kalin, L., Isik, S., Schoonover, J. E., and Lockaby, B. G.: Predicting Water Quality in Unmonitored Watersheds Using Artificial Neural Networks, J. Environ. Qual., 39, 1429–1440, https://doi.org/10.2134/jeq2009.0441, 2010. es_ES
dc.description.references Lemos, M. C. and Rood, R. B.: Climate projections and their impact on policy and practice, Wiley Interdisciplin. Rev. Clim. Change, 1, 670–682, https://doi.org/10.1002/wcc.71, 2010. es_ES
dc.description.references Madrigal, J., Solera, A., Suárez-Almiñana, S., Paredes-Arquiola, J., Andreu, J., and Sánchez-Quispe, S. T.: Skill assessment of a seasonal forecast model to predict drought events for water resource systems, J. Hydrol., 564, 574–587, https://doi.org/10.1016/j.jhydrol.2018.07.046, 2018. es_ES
dc.description.references Manne, D., Tachikawa, Y., Ichikawa, Y., and Yorozu, K.: Evaluation of Bias Correction Methods for Future River Discharge Projection, J. Jpn. Soc. Civ. Eng. Ser., 72, 1–16, https://doi.org/10.2208/jscejer.72.i_7, 2017. es_ES
dc.description.references Maraun, D.: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue, J. Climate, 2137–2143, https://doi.org/10.1175/JCLI-D-12-00821.1, 2013. es_ES
dc.description.references Marcos-Garcia, P., Lopez-Nicolas, A., and Pulido-Velazquez, M.: Combined use of relative drought indices to analyze climate change impact on meteorological and hydrological droughts in a Mediterranean basin, J. Hydrol., 554, 292–305, https://doi.org/10.1016/j.jhydrol.2017.09.028, 2017. es_ES
dc.description.references Milly, P. C. D. and Dunne, K. A.: A Hydrologic Drying Bias in Water-Resource Impact Analyses of Anthropogenic Climate Change, J. Am. Water Resour. Assoc., 53, 822–838, https://doi.org/10.1111/1752-1688.12538, 2017. es_ES
dc.description.references Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith., T. L.: Model evaluation guidelines for systematic quantifi cation of accuracy in watershed simulations, T. ASABE, 50, 885–900, 2007. es_ES
dc.description.references Muerth, M. J., Gauvin St-Denis, B., Ricard, S., Velázquez, J. A., Schmid, J., Minville, M., Caya, D., Chaumont, D., Ludwig, R., and Turcotte, R.: On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff, Hydrol. Earth Syst. Sci., 17, 1189–1204, https://doi.org/10.5194/hess-17-1189-2013, 2013. es_ES
dc.description.references Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models: Part 1. A discussion of principles, J. Hydrol., 10, 282–290, 1970. es_ES
dc.description.references Naustdalslid, J.: Climate change – The challenge of translating scientific knowledge into action, Int. J. Sustain. Dev. World Ecol., 18, 243–252, https://doi.org/10.1080/13504509.2011.572303, 2011. es_ES
dc.description.references Ochoa-Rivera, J. C.: Modelo Estocástico de Redes Neuronales para la Síntesis de Caudales Aplicados a la Gestión Probabilística de Sequías, PhD thesis, Universitat Politècnica de València, Valencia, Spain, 2002. es_ES
dc.description.references Ochoa-Rivera, J. C.: Prospecting droughts with stochastic artificial neural networks, J. Hydrol., 352, 174–180, https://doi.org/10.1016/j.jhydrol.2008.01.006, 2008. es_ES
dc.description.references Paredes-Arquiola, J., Solera, A., Andreu, J., and Lerma, N.: Manual técnico de la herramienta EVALHID para la evaluación de recursos hídricos, Universitat Politècnica de València, Valencia, Spain, 2012. es_ES
dc.description.references Pedro-Monzonís, M., Jiménez-Fernández, P., Solera, A., and Jiménez-Gavilán, P.: The use of AQUATOOL DSS applied to the System of Environmental-Economic Accounting for Water (SEEAW), J. Hydrol., 533, 1–14, https://doi.org/10.1016/j.jhydrol.2015.11.034, 2016. es_ES
dc.description.references Pérez-Martín, M., Thurston, W., Estrela, T., and del Amo, P.: Cambio en las series hidrológicas de los últimos 30 años y sus causas. El efecto 80, in: III Jornadas de Ingeniería del Agua (JIA 2013). La Protección Contra Los Riesgos Hídricos, 23–24 October 2013, Valencia, Spain, 527–534, 2013. es_ES
dc.description.references Sánchez-Quispe, S., Andreu, J., and Solera, A.: Gestión de Recursos Hídricos con Decisiones Basadas en Estimación del Riesgo, PhD thesis, Universitat Politècnica de València, Valencia, Spain, 2001. es_ES
dc.description.references Seager, R., Burgman, R., Kushnir, Y., Clement, A., Cook, E., Naik, N., and Miller, J.: Tropical pacific forcing of North American medieval megadroughts: Testing the concept with an atmosphere model forced by coral-reconstructed SSTs, J. Climate, 21, 6175–6190, https://doi.org/10.1175/2008JCLI2170.1, 2008. es_ES
dc.description.references Stagl, J. C. and Hattermann, F. F.: Impacts of climate change on the hydrological regime of the danube river and its tributaries using an ensemble of climate scenarios, Water, 7, 6139–6172, https://doi.org/10.3390/w8120566, 2015. es_ES
dc.description.references Stagl, J. C. and Hattermann, F. F.: Impacts of Climate Change on Riverine Ecosystems: Alterations of Ecologically Relevant Flow Dynamics in the Danube River and Its Major Tributaries, Water, 8, 566, https://doi.org/10.3390/w8120566, 2016. es_ES
dc.description.references Suárez-Almiñana, S., Pedro-Monzonís, M., Paredes-Arquiola, J., Andreu, J., and Solera, A.: Linking Pan-European data to the local scale for decision making for global change and water scarcity within water resources planning and management, Sci. Total Environ., 603–604, 126–139, https://doi.org/10.1016/j.scitotenv.2017.05.259, 2017. es_ES
dc.description.references Suárez-Almiñana, S., Solera, A., Andreu, J., and García-Romero, L.: Uncertainty analysis of climate projections in relation to historical contributions in the Júcar River Basin, Ing. del agua, 24, 89–99, https://doi.org/10.4995/Ia.2020.12149, 2020. es_ES
dc.description.references Switanek, B. M., Troch, A. P., Castro, L. C., Leuprecht, A., Chang, H. I., Mukherjee, R., and Demaria, M. C. E.: Scaled distribution mapping: A bias correction method that preserves raw climate model projected changes, Hydrol. Earth Syst. Sci., 21, 2649–2666, https://doi.org/10.5194/hess-21-2649-2017, 2017. es_ES
dc.description.references Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods, J. Hydrol., 456–457, 12–29, https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012. es_ES
dc.description.references Teutschbein, C. and Seibert, J.: Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions, Hydrol. Earth Syst. Sci., 17, 5061–5077, https://doi.org/10.5194/hess-17-5061-2013, 2013. es_ES
dc.description.references Thompson, V., Dunstone, N. J., Scaife, A. A., Smith, D. M., Slingo, J. M., Brown, S., and Belcher, S. E.: High risk of unprecedented UK rainfall in the current climate, Nat. Commun., 8, 1–6, https://doi.org/10.1038/s41467-017-00275-3, 2017. es_ES
dc.description.references van den Hurk, B. J. J. M., Bouwer, L. M., Buontempo, C., Döscher, R., Ercin, E., Hananel, C., Hunink, J. E., Kjellström, E., Klein, B., Manez, M., Pappenberger, F., Pouget, L., Ramos, M. H., Ward, P. J., Weerts, A. H., and Wijngaard, J. B.: Improving predictions and management of hydrological extremes through climate services, Clim. Serv., 1, 6–11, https://doi.org/10.1016/j.cliser.2016.01.001, 2016. es_ES
dc.description.references van den Hurk, B., Hewitt, C., Jacob, D., Bessembinder, J., Doblas-Reyes, F., and Döscher, R.: The match between climate services demands and Earth System Models supplies, Clim. Serv., 12, 59–63, https://doi.org/10.1016/j.cliser.2018.11.002, 2018. es_ES
dc.description.references Vetter, T., Huang, S., Aich, V., Yang, T., Wang, X., Krysanova, V., and Hattermann, F.: Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents, Earth Syst. Dynam., 6, 17–43, https://doi.org/10.5194/esd-6-17-2015, 2015. es_ES
dc.description.references Zambrano-Bigiarini, M.: hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series, R package version 0.4-0, Zenodo, https://doi.org/10.5281/zenodo.839854, 2020. es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem