- -

A Single-Particle Trigger for Time-of-Flight Measurements in Prompt-Gamma Imaging

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Single-Particle Trigger for Time-of-Flight Measurements in Prompt-Gamma Imaging

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martins, Paulo Magalhaes es_ES
dc.contributor.author Dal Bello, Riccardo es_ES
dc.contributor.author Seimetz, Michael es_ES
dc.contributor.author Hermann, German es_ES
dc.contributor.author Kihm, Thomas es_ES
dc.contributor.author Seco, Joao es_ES
dc.date.accessioned 2021-02-13T04:32:13Z
dc.date.available 2021-02-13T04:32:13Z
dc.date.issued 2020-05-26 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161214
dc.description.abstract [EN] Tracking of single particles accelerated by synchrotrons is a subject that crosses several physics fields. The high clinical intensities used in particle therapy that can exceed 10(9)p/s make this task very challenging. The tracking of the arrival time of single particles in the ion beam is fundamental for the verification of the particle range and dose delivered to the patient. We present a prototype made of scintillating fibers which has been used to provide time-of-flight (TOF) information for three beam species currently accelerated at the Heidelberg Ion-Beam Therapy Center (HIT). We have demonstrated a time-tracker for a prompt-gamma spectroscopy system that allows for a background TOF rejection with a sub-nanosecond time resolution. es_ES
dc.description.sponsorship PM was supported by a research fellowship for postdoctoral researchers from the Alexander von Humboldt Foundation, Bonn, Germany. RD was supported by the International Max Planck Research School for Quantum Dynamics in Physics, Chemistry and Biology, Heidelberg, Germany. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media es_ES
dc.relation.ispartof Frontiers in Physics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Prompt-gamma es_ES
dc.subject Particle tracking scintillating fibers es_ES
dc.subject Ion-beam therapy es_ES
dc.subject Synchrotons es_ES
dc.title A Single-Particle Trigger for Time-of-Flight Measurements in Prompt-Gamma Imaging es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphy.2020.00169 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Martins, PM.; Dal Bello, R.; Seimetz, M.; Hermann, G.; Kihm, T.; Seco, J. (2020). A Single-Particle Trigger for Time-of-Flight Measurements in Prompt-Gamma Imaging. Frontiers in Physics. 8:1-13. https://doi.org/10.3389/fphy.2020.00169 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphy.2020.00169 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.eissn 2296-424X es_ES
dc.relation.pasarela S\412954 es_ES
dc.contributor.funder Max Planck Society es_ES
dc.contributor.funder Alexander von Humboldt Foundation es_ES
dc.description.references Parodi, K., Crespo, P., Eickhoff, H., Haberer, T., Pawelke, J., Schardt, D., & Enghardt, W. (2005). Random coincidences during in-beam PET measurements at microbunched therapeutic ion beams. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 545(1-2), 446-458. doi:10.1016/j.nima.2005.02.002 es_ES
dc.description.references Crespo, P., Barthel, T., Frais-Kolbl, H., Griesmayer, E., Heidel, K., Parodi, K., … Enghardt, W. (2005). Suppression of random coincidences during in-beam PET measurements at ion beam radiotherapy facilities. IEEE Transactions on Nuclear Science, 52(4), 980-987. doi:10.1109/tns.2005.852637 es_ES
dc.description.references Testa, E., Bajard, M., Chevallier, M., Dauvergne, D., Le Foulher, F., Freud, N., … Testa, M. (2008). Monitoring the Bragg peak location of 73MeV∕u carbon ions by means of prompt γ-ray measurements. Applied Physics Letters, 93(9), 093506. doi:10.1063/1.2975841 es_ES
dc.description.references Biegun, A. K., Seravalli, E., Lopes, P. C., Rinaldi, I., Pinto, M., Oxley, D. C., … Schaart, D. R. (2012). Time-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: a simulation study. Physics in Medicine and Biology, 57(20), 6429-6444. doi:10.1088/0031-9155/57/20/6429 es_ES
dc.description.references Smeets, J., Roellinghoff, F., Prieels, D., Stichelbaut, F., Benilov, A., Busca, P., … Dubus, A. (2012). Prompt gamma imaging with a slit camera for real-time range control in proton therapy. Physics in Medicine and Biology, 57(11), 3371-3405. doi:10.1088/0031-9155/57/11/3371 es_ES
dc.description.references Verburg, J. M., Riley, K., Bortfeld, T., & Seco, J. (2013). Energy- and time-resolved detection of prompt gamma-rays for proton range verification. Physics in Medicine and Biology, 58(20), L37-L49. doi:10.1088/0031-9155/58/20/l37 es_ES
dc.description.references Golnik, C., Hueso-González, F., Müller, A., Dendooven, P., Enghardt, W., Fiedler, F., … Pausch, G. (2014). Range assessment in particle therapy based on promptγ-ray timing measurements. Physics in Medicine and Biology, 59(18), 5399-5422. doi:10.1088/0031-9155/59/18/5399 es_ES
dc.description.references Cambraia Lopes, P., Clementel, E., Crespo, P., Henrotin, S., Huizenga, J., Janssens, G., … Schaart, D. R. (2015). Time-resolved imaging of prompt-gamma rays for proton range verification using a knife-edge slit camera based on digital photon counters. Physics in Medicine and Biology, 60(15), 6063-6085. doi:10.1088/0031-9155/60/15/6063 es_ES
dc.description.references Petzoldt, J., Roemer, K. E., Enghardt, W., Fiedler, F., Golnik, C., Hueso-González, F., … Pausch, G. (2016). Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility. Physics in Medicine and Biology, 61(6), 2432-2456. doi:10.1088/0031-9155/61/6/2432 es_ES
dc.description.references Verburg, J. M., & Seco, J. (2014). Proton range verification through prompt gamma-ray spectroscopy. Physics in Medicine and Biology, 59(23), 7089-7106. doi:10.1088/0031-9155/59/23/7089 es_ES
dc.description.references Hueso-González, F., Enghardt, W., Fiedler, F., Golnik, C., Janssens, G., Petzoldt, J., … Pausch, G. (2015). First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility. Physics in Medicine and Biology, 60(16), 6247-6272. doi:10.1088/0031-9155/60/16/6247 es_ES
dc.description.references Martins, P. M., Dal Bello, R., Rinscheid, A., Roemer, K., Werner, T., Enghardt, W., … Seco, J. (2017). Prompt gamma spectroscopy for range control with CeBr3. Current Directions in Biomedical Engineering, 3(2), 113-117. doi:10.1515/cdbme-2017-0023 es_ES
dc.description.references Gil, E. C., Albarrán, E. M., Minucci, E., Nüssle, G., Padolski, S., Petrov, P., … Kozhuharov, V. (2017). The beam and detector of the NA62 experiment at CERN. Journal of Instrumentation, 12(05), P05025-P05025. doi:10.1088/1748-0221/12/05/p05025 es_ES
dc.description.references Schüttauf, A. (2004). Timing RPCs in FOPI. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 533(1-2), 65-68. doi:10.1016/j.nima.2004.07.002 es_ES
dc.description.references Alici, A. (2012). Status and performance of the ALICE MRPC-based Time-Of-Flight detector. Journal of Instrumentation, 7(10), P10024-P10024. doi:10.1088/1748-0221/7/10/p10024 es_ES
dc.description.references Blanco, A., Fonte, P., Garzon, J. A., Koenig, W., Kornakov, G., & Lopes, L. (2013). Performance of the HADES-TOF RPC wall in a Au + Au beam at 1.25 AGeV. Journal of Instrumentation, 8(01), P01004-P01004. doi:10.1088/1748-0221/8/01/p01004 es_ES
dc.description.references Sadrozinski, H. F.-W., Ely, S., Fadeyev, V., Galloway, Z., Ngo, J., Parker, C., … Vinattieri, A. (2013). Ultra-fast silicon detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 730, 226-231. doi:10.1016/j.nima.2013.06.033 es_ES
dc.description.references Cartiglia, N., Staiano, A., Sola, V., Arcidiacono, R., Cirio, R., Cenna, F., … Zavrtanik, M. (2017). Beam test results of a 16 ps timing system based on ultra-fast silicon detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 850, 83-88. doi:10.1016/j.nima.2017.01.021 es_ES
dc.description.references Sadrozinski, H. F.-W., Seiden, A., & Cartiglia, N. (2017). 4D tracking with ultra-fast silicon detectors. Reports on Progress in Physics, 81(2), 026101. doi:10.1088/1361-6633/aa94d3 es_ES
dc.description.references Beddar, A. S., Mackie, T. R., & Attix, F. H. (1992). Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical considerations. Physics in Medicine and Biology, 37(10), 1883-1900. doi:10.1088/0031-9155/37/10/006 es_ES
dc.description.references Beddar, A. S., Mackie, T. R., & Attix, F. H. (1992). Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements. Physics in Medicine and Biology, 37(10), 1901-1913. doi:10.1088/0031-9155/37/10/007 es_ES
dc.description.references Beaulieu, L., & Beddar, S. (2016). Review of plastic and liquid scintillation dosimetry for photon, electron, and proton therapy. Physics in Medicine and Biology, 61(20), R305-R343. doi:10.1088/0031-9155/61/20/r305 es_ES
dc.description.references Beddar, S., & Beaulieu, L. (Eds.). (2016). Scintillation Dosimetry. Imaging in Medical Diagnosis and Therapy. doi:10.1201/b19491 es_ES
dc.description.references Marcatili, S., Collot, J., Curtoni, S., Dauvergne, D., Hostachy, J.-Y., Koumeir, C., … Yamouni, M. (2020). Ultra-fast prompt gamma detection in single proton counting regime for range monitoring in particle therapy. Physics in Medicine & Biology, 65(24), 245033. doi:10.1088/1361-6560/ab7a6c es_ES
dc.description.references Kirn, T. (2017). SciFi – A large scintillating fibre tracker for LHCb. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 845, 481-485. doi:10.1016/j.nima.2016.06.057 es_ES
dc.description.references Leverington, B. D., Dziewiecki, M., Renner, L., & Runze, R. (2018). A prototype scintillating fibre beam profile monitor for Ion Therapy beams. Journal of Instrumentation, 13(05), P05030-P05030. doi:10.1088/1748-0221/13/05/p05030 es_ES
dc.description.references Vignati, A., Monaco, V., Attili, A., Cartiglia, N., Donetti, M., Mazinani, M. F., … Cirio, R. (2017). Innovative thin silicon detectors for monitoring of therapeutic proton beams: preliminary beam tests. Journal of Instrumentation, 12(12), C12056-C12056. doi:10.1088/1748-0221/12/12/c12056 es_ES
dc.description.references Krimmer, J., Dauvergne, D., Létang, J. M., & Testa, É. (2018). Prompt-gamma monitoring in hadrontherapy: A review. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878, 58-73. doi:10.1016/j.nima.2017.07.063 es_ES
dc.description.references Pausch, G., Berthold, J., Enghardt, W., Römer, K., Straessner, A., Wagner, A., … Kögler, T. (2020). Detection systems for range monitoring in proton therapy: Needs and challenges. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 954, 161227. doi:10.1016/j.nima.2018.09.062 es_ES
dc.description.references Hueso-Gonzalez, F., & Bortfeld, T. (2020). Compact Method for Proton Range Verification Based on Coaxial Prompt Gamma-Ray Monitoring: A Theoretical Study. IEEE Transactions on Radiation and Plasma Medical Sciences, 4(2), 170-183. doi:10.1109/trpms.2019.2930362 es_ES
dc.description.references Haberer, T., Debus, J., Eickhoff, H., Jäkel, O., Schulz-Ertner, D., & Weber, U. (2004). The heidelberg ion therapy center. Radiotherapy and Oncology, 73, S186-S190. doi:10.1016/s0167-8140(04)80046-x es_ES
dc.description.references Hara, K., Hata, K., Kim, S., Mishina, M., Sano, M., Seiya, Y., … Yasuoka, K. (1998). Radiation hardness and mechanical durability of Kuraray optical fibers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 411(1), 31-40. doi:10.1016/s0168-9002(98)00281-2 es_ES
dc.description.references Joram, C., Haefeli, G., & Leverington, B. (2015). Scintillating Fibre Tracking at High Luminosity Colliders. Journal of Instrumentation, 10(08), C08005-C08005. doi:10.1088/1748-0221/10/08/c08005 es_ES
dc.description.references EkelhofRJ Studies for the LHCb SciFi Tracker - Development of Modules from Scintillating Fibres and Tests of their Radiation Hardness2016 es_ES
dc.description.references Online control of particle therapy - CLaRyS collaboration1825 DauvergneD Final MediNet Network Meeting2019 es_ES
dc.description.references Tessonnier, T., Mairani, A., Chen, W., Sala, P., Cerutti, F., Ferrari, A., … Parodi, K. (2018). Proton and helium ion radiotherapy for meningioma tumors: a Monte Carlo-based treatment planning comparison. Radiation Oncology, 13(1). doi:10.1186/s13014-017-0944-3 es_ES
dc.description.references Mein, S., Dokic, I., Klein, C., Tessonnier, T., Böhlen, T. T., Magro, G., … Mairani, A. (2019). Biophysical modeling and experimental validation of relative biological effectiveness (RBE) for 4He ion beam therapy. Radiation Oncology, 14(1). doi:10.1186/s13014-019-1295-z es_ES
dc.description.references Schoemers, C., Feldmeier, E., Naumann, J., Panse, R., Peters, A., & Haberer, T. (2015). The intensity feedback system at Heidelberg Ion-Beam Therapy Centre. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 795, 92-99. doi:10.1016/j.nima.2015.05.054 es_ES
dc.description.references Werner, F., Bauer, C., Bernhard, S., Capasso, M., Diebold, S., Eisenkolb, F., … Zietara, K. (2017). Performance verification of the FlashCam prototype camera for the Cherenkov Telescope Array. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 876, 31-34. doi:10.1016/j.nima.2016.12.056 es_ES
dc.description.references Actis, M., Agnetta, G., Aharonian, F., Akhperjanian, A., Aleksić, J., … Antico, F. (2011). Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy. Experimental Astronomy, 32(3), 193-316. doi:10.1007/s10686-011-9247-0 es_ES
dc.description.references Dal Bello, R., Magalhaes Martins, P., Graça, J., Hermann, G., Kihm, T., & Seco, J. (2019). Results from the experimental evaluation of CeBr scintillators for He prompt gamma spectroscopy. Medical Physics, 46(8), 3615-3626. doi:10.1002/mp.13594 es_ES
dc.description.references Puehlhofer, G., Bauer, C., Bernhard, S., Capasso, M., Diebold, S., Eisenkolb, F., … Zietara, K. (2016). FlashCam: a fully-digital camera for the medium-sized telescopes of the Cherenkov Telescope Array. Proceedings of The 34th International Cosmic Ray Conference — PoS(ICRC2015). doi:10.22323/1.236.1039 es_ES
dc.description.references Testa, M., Bajard, M., Chevallier, M., Dauvergne, D., Freud, N., Henriquet, P., … Testa, E. (2010). Real-time monitoring of the Bragg-peak position in ion therapy by means of single photon detection. Radiation and Environmental Biophysics, 49(3), 337-343. doi:10.1007/s00411-010-0276-2 es_ES
dc.description.references Dal Bello, R., Magalhaes Martins, P., Brons, S., Hermann, G., Kihm, T., Seimetz, M., & Seco, J. (2020). Prompt gamma spectroscopy for absolute range verification of 12C ions at synchrotron-based facilities. Physics in Medicine & Biology, 65(9), 095010. doi:10.1088/1361-6560/ab7973 es_ES
dc.description.references 21768 LeoWR Techniques for Nuclear and Particle Physics Experiments: A How-to Approach1994 es_ES
dc.description.references Graeff, C., Weber, U., Schuy, C., Saito, N., Volz, L., Piersimoni, P., … Kraemer, M. (2018). [OA027] Helium as a range probe in carbon ion therapy. Physica Medica, 52, 11. doi:10.1016/j.ejmp.2018.06.099 es_ES
dc.description.references Mazzucconi, D., Agosteo, S., Ferrarini, M., Fontana, L., Lante, V., Pullia, M., & Savazzi, S. (2018). Mixed particle beam for simultaneous treatment and online range verification in carbon ion therapy: Proof‐of‐concept study. Medical Physics, 45(11), 5234-5243. doi:10.1002/mp.13219 es_ES
dc.description.references Scintillating Fiber Trackers: recent developments and applications204 BlancF 14th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications2013 es_ES
dc.description.references JoramC UwerU LeveringtonBD KirnT BachmannS EkelhofRJ LHCb Scintillating Fibre Tracker Engineering Design Review Report: Fibres, Mats and Modules2015 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem