Reineck, K.-H., Bentz, E., Fitik, B., Kuchma, D. A., & Bayrak, O. (2014). ACI-DAfStb Databases for Shear Tests on Slender Reinforced Concrete Beams with Stirrups. ACI Structural Journal, 111(5). doi:10.14359/51686819
ISLAM, M. S., PAM, H. J., & KWAN, A. K. H. (1998). SHEAR CAPACITY OF HIGH-STRENGTH CONCRETE BEAMS WITH THEIR POINT OF INFLECTION WITHIN THE SHEAR SPAN. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 128(1), 91-99. doi:10.1680/istbu.1998.30038
Tung, N. D., & Tue, N. V. (2016). Effect of support condition and load arrangement on the shear response of reinforced concrete beams without transverse reinforcement. Engineering Structures, 111, 370-382. doi:10.1016/j.engstruct.2015.12.022
[+]
Reineck, K.-H., Bentz, E., Fitik, B., Kuchma, D. A., & Bayrak, O. (2014). ACI-DAfStb Databases for Shear Tests on Slender Reinforced Concrete Beams with Stirrups. ACI Structural Journal, 111(5). doi:10.14359/51686819
ISLAM, M. S., PAM, H. J., & KWAN, A. K. H. (1998). SHEAR CAPACITY OF HIGH-STRENGTH CONCRETE BEAMS WITH THEIR POINT OF INFLECTION WITHIN THE SHEAR SPAN. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 128(1), 91-99. doi:10.1680/istbu.1998.30038
Tung, N. D., & Tue, N. V. (2016). Effect of support condition and load arrangement on the shear response of reinforced concrete beams without transverse reinforcement. Engineering Structures, 111, 370-382. doi:10.1016/j.engstruct.2015.12.022
Cavagnis, F., Fernández Ruiz, M., & Muttoni, A. (2017). An analysis of the shear-transfer actions in reinforced concrete members without transverse reinforcement based on refined experimental measurements. Structural Concrete, 19(1), 49-64. doi:10.1002/suco.201700145
Adam V, Classen M, Hillebrand M, Hegger J. Shear in continuous slab segments without shear reinforcement under distributed loads. fib Symposium. Concrete – innovations in materials, design and structures; 2019:1771–1778.
Tung, N. D., & Tue, N. V. (2016). A new approach to shear design of slender reinforced concrete members without transverse reinforcement. Engineering Structures, 107, 180-194. doi:10.1016/j.engstruct.2015.04.015
SIA. Code 262 for concrete structures. Zürich, Switzerland: Swiss Society of Engineers and Architects; 2013.
ACI Committee 318. Building code requirements for structural concrete (ACI 318-19); and commentary (ACI 318R-19). Farmington Hills: American Concrete Institute; 2019.
CEN, EN 1992-1-1:2004. Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings; 2004.
Monserrat López, A., Miguel Sosa, P. F., Bonet Senach, J. L., & Fernández Prada, M. Á. (2020). Influence of the plastic hinge rotations on shear strength in continuous reinforced concrete beams with shear reinforcement. Engineering Structures, 207, 110242. doi:10.1016/j.engstruct.2020.110242
UNE EN-12390-3:2009. Ensayos de hormigón endurecido. Parte 3: Determinación de la resistencia a compresión del hormigón endurecido; 2009.
UNE EN-12390-6:2010. Ensayos de hormigón endurecido. Parte 6: Resistencia a tracción indirecta de probetas; 2010.
UNE EN-12390-13:2014. Ensayos de hormigón endurecido. Parte 13: Determinación del módulo secante de elasticidad en compression; 2014.
UNE-EN ISO 6892-1:2017. Materiales metálicos. Ensayo de tracción. Parte 1: Ensayo a temperatura ambiente; 2017.
Campana, S., Fernández Ruiz, M., Anastasi, A., & Muttoni, A. (2013). Analysis of shear-transfer actions on one-way RC members based on measured cracking pattern and failure kinematics. Magazine of Concrete Research, 65(6), 386-404. doi:10.1680/macr.12.00142
Huber, P., Huber, T., & Kollegger, J. (2016). Investigation of the shear behavior of RC beams on the basis of measured crack kinematics. Engineering Structures, 113, 41-58. doi:10.1016/j.engstruct.2016.01.025
[-]