- -

A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery

Show full item record

Serrano, J.; Olmeda, P.; Arnau Martínez, FJ.; Samala, V. (2020). A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery. International Journal of Engine Research. 21(8):1314-1335. https://doi.org/10.1177/1468087419834194

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161379

Files in this item

Item Metadata

Title: A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery
Author: Serrano, J.R. Olmeda, P. Arnau Martínez, Francisco José Samala, Vishnu
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Issued date:
Abstract:
[EN] Turbocharger performance maps provided by manufacturers are usually far from the assumption of reproducing the isentropic performance. The reason being, those maps are usually measured using a hot gas stand. The ...[+]
Subjects: Turbocharging , Waste-gate , Discharge coefficient , Experimental , Modeling
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
International Journal of Engine Research. (issn: 1468-0874 )
DOI: 10.1177/1468087419834194
Publisher:
SAGE Publications
Publisher version: https://doi.org/10.1177/1468087419834194
Project ID:
AGENCIA ESTATAL DE INVESTIGACION/TRA2016-79185-R
Description: This is the author¿s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419834194
Thanks:
The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This work has been partially supported by FEDER and the Government of Spain through Grant ...[+]
Type: Artículo

References

Sirakov, B., & Casey, M. (2012). Evaluation of Heat Transfer Effects on Turbocharger Performance. Journal of Turbomachinery, 135(2). doi:10.1115/1.4006608

Payri, F., Serrano, J. R., Fajardo, P., Reyes-Belmonte, M. A., & Gozalbo-Belles, R. (2012). A physically based methodology to extrapolate performance maps of radial turbines. Energy Conversion and Management, 55, 149-163. doi:10.1016/j.enconman.2011.11.003

Chesse, P., Chalet, D., & Tauzia, X. (2011). Impact of the Heat Transfer on the Performance Calculations of Automotive Turbocharger Compressor. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 66(5), 791-800. doi:10.2516/ogst/2011129 [+]
Sirakov, B., & Casey, M. (2012). Evaluation of Heat Transfer Effects on Turbocharger Performance. Journal of Turbomachinery, 135(2). doi:10.1115/1.4006608

Payri, F., Serrano, J. R., Fajardo, P., Reyes-Belmonte, M. A., & Gozalbo-Belles, R. (2012). A physically based methodology to extrapolate performance maps of radial turbines. Energy Conversion and Management, 55, 149-163. doi:10.1016/j.enconman.2011.11.003

Chesse, P., Chalet, D., & Tauzia, X. (2011). Impact of the Heat Transfer on the Performance Calculations of Automotive Turbocharger Compressor. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 66(5), 791-800. doi:10.2516/ogst/2011129

Serrano, J. R., Olmeda, P., Arnau, F. J., Reyes-Belmonte, M. A., & Tartoussi, H. (2015). A study on the internal convection in small turbochargers. Proposal of heat transfer convective coefficients. Applied Thermal Engineering, 89, 587-599. doi:10.1016/j.applthermaleng.2015.06.053

Tanda, G., Marelli, S., Marmorato, G., & Capobianco, M. (2017). An experimental investigation of internal heat transfer in an automotive turbocharger compressor. Applied Energy, 193, 531-539. doi:10.1016/j.apenergy.2017.02.053

Serrano, J., Olmeda, P., Arnau, F., & Dombrovsky, A. (2014). General Procedure for the Determination of Heat Transfer Properties in Small Automotive Turbochargers. SAE International Journal of Engines, 8(1), 30-41. doi:10.4271/2014-01-2857

Payri, F., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). External heat losses in small turbochargers: Model and experiments. Energy, 71, 534-546. doi:10.1016/j.energy.2014.04.096

Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042

SAE International. Turbocharger gas stand test code, SAE J1826. Technical Report, Society of Automotive Engineers Inc, Warrendale, PA, 1995.

SAE International. Supercharger testing standard, SAE J1723. Technical Report, Society of Automotive Engineers Inc, Warrendale, PA, 1995.

Serrano, J. R., Olmeda, P., Páez, A., & Vidal, F. (2010). An experimental procedure to determine heat transfer properties of turbochargers. Measurement Science and Technology, 21(3), 035109. doi:10.1088/0957-0233/21/3/035109

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record