- -

A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serrano, J.R. es_ES
dc.contributor.author Olmeda, P. es_ES
dc.contributor.author Arnau Martínez, Francisco José es_ES
dc.contributor.author Samala, Vishnu es_ES
dc.date.accessioned 2021-02-16T04:32:00Z
dc.date.available 2021-02-16T04:32:00Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161379
dc.description This is the author¿s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419834194 es_ES
dc.description.abstract [EN] Turbocharger performance maps provided by manufacturers are usually far from the assumption of reproducing the isentropic performance. The reason being, those maps are usually measured using a hot gas stand. The definition of the effective turbocharger efficiency maps include the mechanical losses and heat transfer that has occurred during the gas stand test for the turbine maps and only the heat transfer for the compressor maps. Thus, a turbocharger engine model that uses these maps provides accurate results only when simulating turbocharger operative conditions similar to those at which the maps are recorded. However, for some critical situations such as Worldwide harmonized Light vehicles Test Cycles (WLTC) driving cycle or off-design conditions, it is difficult to ensure this assumption. In this article, an internal and external heat transfer model combined with mechanical losses model, both previously developed and calibrated, has been used as an original tool to ascertain a calculation procedure to obtain adiabatic maps from diabatic standard turbocharger maps. The turbocharger working operative conditions at the time of map measurements and geometrical information of the turbocharger are necessary to discount both effects precisely. However, the maps from turbocharger manufacturers do not include all required information. These create additional challenges to develop the procedure to obtain approximated adiabatic maps making some assumptions based on SAE standards for non-available data. A sensitivity study has been included in this article to check the validity of the hypothesis proposed by changing the values of parameters which are not included in the map data. The proposed procedure becomes a valuable tool either for Original Equipment Manufacturers (OEMs) to parameterize turbocharger performance accurately for benchmarking and turbocharged engine design or to turbocharger manufacturers to provide much-appreciated information of their performance maps. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This work has been partially supported by FEDER and the Government of Spain through Grant No. TRA2016-79185-R. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Turbocharging es_ES
dc.subject Waste-gate es_ES
dc.subject Discharge coefficient es_ES
dc.subject Experimental es_ES
dc.subject Modeling es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087419834194 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2016-79185-R/ES/DESARROLLO DE HERRAMIENTAS EXPERIMENTALES Y COMPUTACIONALES PARA LA CARACTERIZACION DE SISTEMAS DE POST-TRATAMIENTO DE GASES DE ESCAPE EN MOTORES DE ENCENDIDO POR COMPRESION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Serrano, J.; Olmeda, P.; Arnau Martínez, FJ.; Samala, V. (2020). A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery. International Journal of Engine Research. 21(8):1314-1335. https://doi.org/10.1177/1468087419834194 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087419834194 es_ES
dc.description.upvformatpinicio 1314 es_ES
dc.description.upvformatpfin 1335 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\400853 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Sirakov, B., & Casey, M. (2012). Evaluation of Heat Transfer Effects on Turbocharger Performance. Journal of Turbomachinery, 135(2). doi:10.1115/1.4006608 es_ES
dc.description.references Payri, F., Serrano, J. R., Fajardo, P., Reyes-Belmonte, M. A., & Gozalbo-Belles, R. (2012). A physically based methodology to extrapolate performance maps of radial turbines. Energy Conversion and Management, 55, 149-163. doi:10.1016/j.enconman.2011.11.003 es_ES
dc.description.references Chesse, P., Chalet, D., & Tauzia, X. (2011). Impact of the Heat Transfer on the Performance Calculations of Automotive Turbocharger Compressor. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 66(5), 791-800. doi:10.2516/ogst/2011129 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Arnau, F. J., Reyes-Belmonte, M. A., & Tartoussi, H. (2015). A study on the internal convection in small turbochargers. Proposal of heat transfer convective coefficients. Applied Thermal Engineering, 89, 587-599. doi:10.1016/j.applthermaleng.2015.06.053 es_ES
dc.description.references Tanda, G., Marelli, S., Marmorato, G., & Capobianco, M. (2017). An experimental investigation of internal heat transfer in an automotive turbocharger compressor. Applied Energy, 193, 531-539. doi:10.1016/j.apenergy.2017.02.053 es_ES
dc.description.references Serrano, J., Olmeda, P., Arnau, F., & Dombrovsky, A. (2014). General Procedure for the Determination of Heat Transfer Properties in Small Automotive Turbochargers. SAE International Journal of Engines, 8(1), 30-41. doi:10.4271/2014-01-2857 es_ES
dc.description.references Payri, F., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). External heat losses in small turbochargers: Model and experiments. Energy, 71, 534-546. doi:10.1016/j.energy.2014.04.096 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042 es_ES
dc.description.references SAE International. Turbocharger gas stand test code, SAE J1826. Technical Report, Society of Automotive Engineers Inc, Warrendale, PA, 1995. es_ES
dc.description.references SAE International. Supercharger testing standard, SAE J1723. Technical Report, Society of Automotive Engineers Inc, Warrendale, PA, 1995. es_ES
dc.description.references Serrano, J. R., Olmeda, P., Páez, A., & Vidal, F. (2010). An experimental procedure to determine heat transfer properties of turbochargers. Measurement Science and Technology, 21(3), 035109. doi:10.1088/0957-0233/21/3/035109 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem