- -

A stable class of modified Newton-like methods for multiple roots and their dynamics

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A stable class of modified Newton-like methods for multiple roots and their dynamics

Show full item record

Kansal, M.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Bhalla, S. (2020). A stable class of modified Newton-like methods for multiple roots and their dynamics. International Journal of Nonlinear Sciences and Numerical Simulation. 21(6):603-621. https://doi.org/10.1515/ijnsns-2018-0347

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161381

Files in this item

Item Metadata

Title: A stable class of modified Newton-like methods for multiple roots and their dynamics
Author: Kansal, Munish Cordero Barbero, Alicia Torregrosa Sánchez, Juan Ramón Bhalla, Sonia
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] There have appeared in the literature a lot of optimal eighth-order iterative methods for approximating simple zeros of nonlinear functions. Although, the similar ideas can be extended for the case of multiple zeros ...[+]
Subjects: Kung-Traub conjecture , Multiple roots , Nonlinear equations , Optimal iterative methods , Stability
Copyrigths: Reserva de todos los derechos
Source:
International Journal of Nonlinear Sciences and Numerical Simulation. (issn: 1565-1339 )
DOI: 10.1515/ijnsns-2018-0347
Publisher:
Walter de Gruyter GmbH
Publisher version: https://doi.org/10.1515/ijnsns-2018-0347
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Thanks:
This research was partially supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE).
Type: Artículo

References

A. M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New York, 1960.

J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, NJ, 1964.

M. S. Petković, B. Neta, L. D. Petković, and J. Džunić, Multipoint Methods for Solving Nonlinear Equations, Academic Press, 2013. [+]
A. M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New York, 1960.

J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, NJ, 1964.

M. S. Petković, B. Neta, L. D. Petković, and J. Džunić, Multipoint Methods for Solving Nonlinear Equations, Academic Press, 2013.

R. Behl, A. Cordero, S. S Motsa, and J. R. Torregrosa, “On developing fourth-order optimal families of methods for multiple roots and their dynamics,” Appl. Math. Comput., vol. 265, no. 15, pp. 520–532, 2015, https://doi.org/10.1016/j.amc.2015.05.004.

R. Behl, A. Cordero, S. S. Motsa, J. R. Torregrosa, and V. Kanwar, “An optimal fourth-order family of methods for multiple roots and its dynamics,” Numer. Algor., vol. 71, no. 4, pp. 775–796, 2016, https://doi.org/10.1007/s11075-015-0023-5.

S. Li, X. Liao, and L. Cheng, “A new fourth-order iterative method for finding multiple roots of nonlinear equations,” Appl. Math. Comput., vol. 215, pp. 1288–1292, 2009, https://doi.org/10.1016/j.amc.2009.06.065.

B. Neta, C. Chun, and M. Scott, “On the development of iterative methods for multiple roots,” Appl. Math. Comput., vol. 224, pp. 358–361, 2013, https://doi.org/10.1016/j.amc.2013.08.077.

J. R. Sharma and R. Sharma, “Modified Jarratt method for computing multiple roots,” Appl. Math. Comput., vol. 217, pp. 878–881, 2010, https://doi.org/10.1016/j.amc.2010.06.031.

X. Zhou, X. Chen, and Y. Song, “Constructing higher-order methods for obtaining the multiple roots of nonlinear equations,” Comput. Appl. Math., vol. 235, pp. 4199–4206, 2011, https://doi.org/10.1016/j.cam.2011.03.014.

S. Li, L. Cheng, and B. Neta, “Some fourth-order nonlinear solvers with closed formulae for multiple roots,” Comput. Math. Appl., vol. 59, pp. 126–135, 2010, https://doi.org/10.1016/j.camwa.2009.08.066.

B. Neta, “Extension of Murakami’s high-order non-linear solver to multiple roots,” Int. J. Comput. Math., vol. 87, no. 5, pp. 1023–1031, 2010, https://doi.org/10.1080/00207160802272263.

R. Thukral, “Introduction to higher-order iterative methods for finding multiple roots of nonlinear equations,” J. Math. Article ID 404635, p. 3, 2013, https://doi.org/10.1155/2013/404635.

Y. H. Geum, Y. I. Kim, and B. Neta, “A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics,” Appl. Math. Comput., vol. 270, pp. 387–400, 2015, https://doi.org/10.1016/j.amc.2015.08.039.

Y. H. Geum, Y. I. Kim, and B. Neta, “A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points,” Appl. Math. Comput., vol. 283, pp. 120–140, 2016, https://doi.org/10.1016/j.amc.2016.02.029.

R. Behl, A. Cordero, S. S. Motsa, and J. R. Torregrosa, “An eighth-order family of optimal multiple root finders and its dynamics,” Numer. Algor., vol. 77, pp. 1249–1272, 2018, https://doi.org/10.1007/s11075-017-0361-6.

F. Zafar, A. Cordero, R. Quratulain, and J. R. Torregrosa, “Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters,” J. Math. Chem., vol. 56, no. 15, pp. 1–18, 2017, https://doi.org/10.1007/s10910-017-0813-1.

P. Blanchard, “Complex Analytic Dynamics on the Riemann Sphere,” Bull. AMS, vol. 11, no. 1, pp. 85–141, 1984, https://doi.org/10.1090/s0273-0979-1984-15240-6.

F. I. Chicharro, A. Cordero, and J. R. Torregrosa, “Drawing dynamical and parameters planes of iterative families and methods,” Sci. World J., vol. 2013 Article ID 780153, p. 11, 2013, https://doi.org/10.1155/2013/780153.

L. O. Jay, “A note on Q-order of convergence,” BIT Numer. Math., vol. 41, pp. 422–429, 2001, https://doi.org/10.1023/a:1021902825707.

M. Shacham, “Numerical solution of constrained nonlinear algebraic equations,” Int. J. Numer. Method Eng., vol. 23, pp. 1455–1481, 1986, https://doi.org/10.1002/nme.1620230805.

A. Constantinides and N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications, Prentice Hall PTR, New Jersey, 1999.

J. M. Douglas, Process Dynamics and Control, vol. 2, Prentice Hall, Englewood Cliffs, 1972.

D. Jain, “Families of Newton-like method with fourth-order convergence,” Int. J. Comput. Math., vol. 90, no. 5, pp. 1072–1082, 2013, https://doi.org/10.1080/00207160.2012.746677.

P. J. Bresnahan, G. W. Griffiths, A. J. McHugh, and W. E. Schiesser, An Introductory Global CO2 Model Personal Communication, 2009. http://www.lehigh.edu/wes1/co2/model.pdf.

D. K. R. Babajee, Analysis of Higher Order Variants of Newton’s Method and their Applications to Differential and Integral Equations and in Ocean Acidification Ph.D. thesis, University of Mauritius, 2010.

J. L. Sarmiento and N. Gruber, Ocean Biogeochemical Dynamics, Princeton University Press, Princeton, NJ, 2006.

R. Bacastow and C. D. Keeling, “Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: Changes from a.d. 1700 to 2070 as deduced from a geochemical model,” in Proceedings of the 24th Brookhaven Symposium in Biology, The Technical Information Center, Office of Information Services, United State Atomic Energy Commission, G. W. Woodwell and E. V. Pecan, Eds., Upton, NY, 1972, pp. 86–133.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record