- -

A stable class of modified Newton-like methods for multiple roots and their dynamics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A stable class of modified Newton-like methods for multiple roots and their dynamics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kansal, Munish es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Bhalla, Sonia es_ES
dc.date.accessioned 2021-02-16T04:32:07Z
dc.date.available 2021-02-16T04:32:07Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 1565-1339 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161381
dc.description.abstract [EN] There have appeared in the literature a lot of optimal eighth-order iterative methods for approximating simple zeros of nonlinear functions. Although, the similar ideas can be extended for the case of multiple zeros but the main drawback is that the order of convergence and computational efficiency reduce dramatically. Therefore, in order to retain the accuracy and convergence order, several optimal and non-optimal modifications have been proposed in the literature. But, as far as we know, there are limited number of optimal eighth-order methods that can handle the case of multiple zeros. With this aim, a wide general class of optimal eighth-order methods for multiple zeros with known multiplicity is brought forward, which is based on weight function technique involving function-to-function ratio. An extensive convergence analysis is demonstrated to establish the eighth-order of the developed methods. The numerical experiments considered the superiority of the new methods for solving concrete variety of real life problems coming from different disciplines such as trajectory of an electron in the air gap between two parallel plates, the fractional conversion in a chemical reactor, continuous stirred tank reactor problem, Planck's radiation law problem, which calculates the energy density within an isothermal blackbody and the problem arising from global carbon dioxide model in ocean chemistry, in comparison with methods of similar characteristics appeared in the literature. es_ES
dc.description.sponsorship This research was partially supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE). es_ES
dc.language Inglés es_ES
dc.publisher Walter de Gruyter GmbH es_ES
dc.relation.ispartof International Journal of Nonlinear Sciences and Numerical Simulation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Kung-Traub conjecture es_ES
dc.subject Multiple roots es_ES
dc.subject Nonlinear equations es_ES
dc.subject Optimal iterative methods es_ES
dc.subject Stability es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A stable class of modified Newton-like methods for multiple roots and their dynamics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1515/ijnsns-2018-0347 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Kansal, M.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Bhalla, S. (2020). A stable class of modified Newton-like methods for multiple roots and their dynamics. International Journal of Nonlinear Sciences and Numerical Simulation. 21(6):603-621. https://doi.org/10.1515/ijnsns-2018-0347 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1515/ijnsns-2018-0347 es_ES
dc.description.upvformatpinicio 603 es_ES
dc.description.upvformatpfin 621 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\423813 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references A. M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New York, 1960. es_ES
dc.description.references J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, NJ, 1964. es_ES
dc.description.references M. S. Petković, B. Neta, L. D. Petković, and J. Džunić, Multipoint Methods for Solving Nonlinear Equations, Academic Press, 2013. es_ES
dc.description.references R. Behl, A. Cordero, S. S Motsa, and J. R. Torregrosa, “On developing fourth-order optimal families of methods for multiple roots and their dynamics,” Appl. Math. Comput., vol. 265, no. 15, pp. 520–532, 2015, https://doi.org/10.1016/j.amc.2015.05.004. es_ES
dc.description.references R. Behl, A. Cordero, S. S. Motsa, J. R. Torregrosa, and V. Kanwar, “An optimal fourth-order family of methods for multiple roots and its dynamics,” Numer. Algor., vol. 71, no. 4, pp. 775–796, 2016, https://doi.org/10.1007/s11075-015-0023-5. es_ES
dc.description.references S. Li, X. Liao, and L. Cheng, “A new fourth-order iterative method for finding multiple roots of nonlinear equations,” Appl. Math. Comput., vol. 215, pp. 1288–1292, 2009, https://doi.org/10.1016/j.amc.2009.06.065. es_ES
dc.description.references B. Neta, C. Chun, and M. Scott, “On the development of iterative methods for multiple roots,” Appl. Math. Comput., vol. 224, pp. 358–361, 2013, https://doi.org/10.1016/j.amc.2013.08.077. es_ES
dc.description.references J. R. Sharma and R. Sharma, “Modified Jarratt method for computing multiple roots,” Appl. Math. Comput., vol. 217, pp. 878–881, 2010, https://doi.org/10.1016/j.amc.2010.06.031. es_ES
dc.description.references X. Zhou, X. Chen, and Y. Song, “Constructing higher-order methods for obtaining the multiple roots of nonlinear equations,” Comput. Appl. Math., vol. 235, pp. 4199–4206, 2011, https://doi.org/10.1016/j.cam.2011.03.014. es_ES
dc.description.references S. Li, L. Cheng, and B. Neta, “Some fourth-order nonlinear solvers with closed formulae for multiple roots,” Comput. Math. Appl., vol. 59, pp. 126–135, 2010, https://doi.org/10.1016/j.camwa.2009.08.066. es_ES
dc.description.references B. Neta, “Extension of Murakami’s high-order non-linear solver to multiple roots,” Int. J. Comput. Math., vol. 87, no. 5, pp. 1023–1031, 2010, https://doi.org/10.1080/00207160802272263. es_ES
dc.description.references R. Thukral, “Introduction to higher-order iterative methods for finding multiple roots of nonlinear equations,” J. Math. Article ID 404635, p. 3, 2013, https://doi.org/10.1155/2013/404635. es_ES
dc.description.references Y. H. Geum, Y. I. Kim, and B. Neta, “A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics,” Appl. Math. Comput., vol. 270, pp. 387–400, 2015, https://doi.org/10.1016/j.amc.2015.08.039. es_ES
dc.description.references Y. H. Geum, Y. I. Kim, and B. Neta, “A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points,” Appl. Math. Comput., vol. 283, pp. 120–140, 2016, https://doi.org/10.1016/j.amc.2016.02.029. es_ES
dc.description.references R. Behl, A. Cordero, S. S. Motsa, and J. R. Torregrosa, “An eighth-order family of optimal multiple root finders and its dynamics,” Numer. Algor., vol. 77, pp. 1249–1272, 2018, https://doi.org/10.1007/s11075-017-0361-6. es_ES
dc.description.references F. Zafar, A. Cordero, R. Quratulain, and J. R. Torregrosa, “Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters,” J. Math. Chem., vol. 56, no. 15, pp. 1–18, 2017, https://doi.org/10.1007/s10910-017-0813-1. es_ES
dc.description.references P. Blanchard, “Complex Analytic Dynamics on the Riemann Sphere,” Bull. AMS, vol. 11, no. 1, pp. 85–141, 1984, https://doi.org/10.1090/s0273-0979-1984-15240-6. es_ES
dc.description.references F. I. Chicharro, A. Cordero, and J. R. Torregrosa, “Drawing dynamical and parameters planes of iterative families and methods,” Sci. World J., vol. 2013 Article ID 780153, p. 11, 2013, https://doi.org/10.1155/2013/780153. es_ES
dc.description.references L. O. Jay, “A note on Q-order of convergence,” BIT Numer. Math., vol. 41, pp. 422–429, 2001, https://doi.org/10.1023/a:1021902825707. es_ES
dc.description.references M. Shacham, “Numerical solution of constrained nonlinear algebraic equations,” Int. J. Numer. Method Eng., vol. 23, pp. 1455–1481, 1986, https://doi.org/10.1002/nme.1620230805. es_ES
dc.description.references A. Constantinides and N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications, Prentice Hall PTR, New Jersey, 1999. es_ES
dc.description.references J. M. Douglas, Process Dynamics and Control, vol. 2, Prentice Hall, Englewood Cliffs, 1972. es_ES
dc.description.references D. Jain, “Families of Newton-like method with fourth-order convergence,” Int. J. Comput. Math., vol. 90, no. 5, pp. 1072–1082, 2013, https://doi.org/10.1080/00207160.2012.746677. es_ES
dc.description.references P. J. Bresnahan, G. W. Griffiths, A. J. McHugh, and W. E. Schiesser, An Introductory Global CO2 Model Personal Communication, 2009. http://www.lehigh.edu/wes1/co2/model.pdf. es_ES
dc.description.references D. K. R. Babajee, Analysis of Higher Order Variants of Newton’s Method and their Applications to Differential and Integral Equations and in Ocean Acidification Ph.D. thesis, University of Mauritius, 2010. es_ES
dc.description.references J. L. Sarmiento and N. Gruber, Ocean Biogeochemical Dynamics, Princeton University Press, Princeton, NJ, 2006. es_ES
dc.description.references R. Bacastow and C. D. Keeling, “Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: Changes from a.d. 1700 to 2070 as deduced from a geochemical model,” in Proceedings of the 24th Brookhaven Symposium in Biology, The Technical Information Center, Office of Information Services, United State Atomic Energy Commission, G. W. Woodwell and E. V. Pecan, Eds., Upton, NY, 1972, pp. 86–133. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem