Mostrar el registro sencillo del ítem
dc.contributor.author | Kansal, Munish | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Bhalla, Sonia | es_ES |
dc.date.accessioned | 2021-02-16T04:32:07Z | |
dc.date.available | 2021-02-16T04:32:07Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.issn | 1565-1339 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161381 | |
dc.description.abstract | [EN] There have appeared in the literature a lot of optimal eighth-order iterative methods for approximating simple zeros of nonlinear functions. Although, the similar ideas can be extended for the case of multiple zeros but the main drawback is that the order of convergence and computational efficiency reduce dramatically. Therefore, in order to retain the accuracy and convergence order, several optimal and non-optimal modifications have been proposed in the literature. But, as far as we know, there are limited number of optimal eighth-order methods that can handle the case of multiple zeros. With this aim, a wide general class of optimal eighth-order methods for multiple zeros with known multiplicity is brought forward, which is based on weight function technique involving function-to-function ratio. An extensive convergence analysis is demonstrated to establish the eighth-order of the developed methods. The numerical experiments considered the superiority of the new methods for solving concrete variety of real life problems coming from different disciplines such as trajectory of an electron in the air gap between two parallel plates, the fractional conversion in a chemical reactor, continuous stirred tank reactor problem, Planck's radiation law problem, which calculates the energy density within an isothermal blackbody and the problem arising from global carbon dioxide model in ocean chemistry, in comparison with methods of similar characteristics appeared in the literature. | es_ES |
dc.description.sponsorship | This research was partially supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Walter de Gruyter GmbH | es_ES |
dc.relation.ispartof | International Journal of Nonlinear Sciences and Numerical Simulation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Kung-Traub conjecture | es_ES |
dc.subject | Multiple roots | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Optimal iterative methods | es_ES |
dc.subject | Stability | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A stable class of modified Newton-like methods for multiple roots and their dynamics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1515/ijnsns-2018-0347 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Kansal, M.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Bhalla, S. (2020). A stable class of modified Newton-like methods for multiple roots and their dynamics. International Journal of Nonlinear Sciences and Numerical Simulation. 21(6):603-621. https://doi.org/10.1515/ijnsns-2018-0347 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1515/ijnsns-2018-0347 | es_ES |
dc.description.upvformatpinicio | 603 | es_ES |
dc.description.upvformatpfin | 621 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\423813 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | A. M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New York, 1960. | es_ES |
dc.description.references | J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, NJ, 1964. | es_ES |
dc.description.references | M. S. Petković, B. Neta, L. D. Petković, and J. Džunić, Multipoint Methods for Solving Nonlinear Equations, Academic Press, 2013. | es_ES |
dc.description.references | R. Behl, A. Cordero, S. S Motsa, and J. R. Torregrosa, “On developing fourth-order optimal families of methods for multiple roots and their dynamics,” Appl. Math. Comput., vol. 265, no. 15, pp. 520–532, 2015, https://doi.org/10.1016/j.amc.2015.05.004. | es_ES |
dc.description.references | R. Behl, A. Cordero, S. S. Motsa, J. R. Torregrosa, and V. Kanwar, “An optimal fourth-order family of methods for multiple roots and its dynamics,” Numer. Algor., vol. 71, no. 4, pp. 775–796, 2016, https://doi.org/10.1007/s11075-015-0023-5. | es_ES |
dc.description.references | S. Li, X. Liao, and L. Cheng, “A new fourth-order iterative method for finding multiple roots of nonlinear equations,” Appl. Math. Comput., vol. 215, pp. 1288–1292, 2009, https://doi.org/10.1016/j.amc.2009.06.065. | es_ES |
dc.description.references | B. Neta, C. Chun, and M. Scott, “On the development of iterative methods for multiple roots,” Appl. Math. Comput., vol. 224, pp. 358–361, 2013, https://doi.org/10.1016/j.amc.2013.08.077. | es_ES |
dc.description.references | J. R. Sharma and R. Sharma, “Modified Jarratt method for computing multiple roots,” Appl. Math. Comput., vol. 217, pp. 878–881, 2010, https://doi.org/10.1016/j.amc.2010.06.031. | es_ES |
dc.description.references | X. Zhou, X. Chen, and Y. Song, “Constructing higher-order methods for obtaining the multiple roots of nonlinear equations,” Comput. Appl. Math., vol. 235, pp. 4199–4206, 2011, https://doi.org/10.1016/j.cam.2011.03.014. | es_ES |
dc.description.references | S. Li, L. Cheng, and B. Neta, “Some fourth-order nonlinear solvers with closed formulae for multiple roots,” Comput. Math. Appl., vol. 59, pp. 126–135, 2010, https://doi.org/10.1016/j.camwa.2009.08.066. | es_ES |
dc.description.references | B. Neta, “Extension of Murakami’s high-order non-linear solver to multiple roots,” Int. J. Comput. Math., vol. 87, no. 5, pp. 1023–1031, 2010, https://doi.org/10.1080/00207160802272263. | es_ES |
dc.description.references | R. Thukral, “Introduction to higher-order iterative methods for finding multiple roots of nonlinear equations,” J. Math. Article ID 404635, p. 3, 2013, https://doi.org/10.1155/2013/404635. | es_ES |
dc.description.references | Y. H. Geum, Y. I. Kim, and B. Neta, “A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics,” Appl. Math. Comput., vol. 270, pp. 387–400, 2015, https://doi.org/10.1016/j.amc.2015.08.039. | es_ES |
dc.description.references | Y. H. Geum, Y. I. Kim, and B. Neta, “A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points,” Appl. Math. Comput., vol. 283, pp. 120–140, 2016, https://doi.org/10.1016/j.amc.2016.02.029. | es_ES |
dc.description.references | R. Behl, A. Cordero, S. S. Motsa, and J. R. Torregrosa, “An eighth-order family of optimal multiple root finders and its dynamics,” Numer. Algor., vol. 77, pp. 1249–1272, 2018, https://doi.org/10.1007/s11075-017-0361-6. | es_ES |
dc.description.references | F. Zafar, A. Cordero, R. Quratulain, and J. R. Torregrosa, “Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters,” J. Math. Chem., vol. 56, no. 15, pp. 1–18, 2017, https://doi.org/10.1007/s10910-017-0813-1. | es_ES |
dc.description.references | P. Blanchard, “Complex Analytic Dynamics on the Riemann Sphere,” Bull. AMS, vol. 11, no. 1, pp. 85–141, 1984, https://doi.org/10.1090/s0273-0979-1984-15240-6. | es_ES |
dc.description.references | F. I. Chicharro, A. Cordero, and J. R. Torregrosa, “Drawing dynamical and parameters planes of iterative families and methods,” Sci. World J., vol. 2013 Article ID 780153, p. 11, 2013, https://doi.org/10.1155/2013/780153. | es_ES |
dc.description.references | L. O. Jay, “A note on Q-order of convergence,” BIT Numer. Math., vol. 41, pp. 422–429, 2001, https://doi.org/10.1023/a:1021902825707. | es_ES |
dc.description.references | M. Shacham, “Numerical solution of constrained nonlinear algebraic equations,” Int. J. Numer. Method Eng., vol. 23, pp. 1455–1481, 1986, https://doi.org/10.1002/nme.1620230805. | es_ES |
dc.description.references | A. Constantinides and N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications, Prentice Hall PTR, New Jersey, 1999. | es_ES |
dc.description.references | J. M. Douglas, Process Dynamics and Control, vol. 2, Prentice Hall, Englewood Cliffs, 1972. | es_ES |
dc.description.references | D. Jain, “Families of Newton-like method with fourth-order convergence,” Int. J. Comput. Math., vol. 90, no. 5, pp. 1072–1082, 2013, https://doi.org/10.1080/00207160.2012.746677. | es_ES |
dc.description.references | P. J. Bresnahan, G. W. Griffiths, A. J. McHugh, and W. E. Schiesser, An Introductory Global CO2 Model Personal Communication, 2009. http://www.lehigh.edu/wes1/co2/model.pdf. | es_ES |
dc.description.references | D. K. R. Babajee, Analysis of Higher Order Variants of Newton’s Method and their Applications to Differential and Integral Equations and in Ocean Acidification Ph.D. thesis, University of Mauritius, 2010. | es_ES |
dc.description.references | J. L. Sarmiento and N. Gruber, Ocean Biogeochemical Dynamics, Princeton University Press, Princeton, NJ, 2006. | es_ES |
dc.description.references | R. Bacastow and C. D. Keeling, “Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: Changes from a.d. 1700 to 2070 as deduced from a geochemical model,” in Proceedings of the 24th Brookhaven Symposium in Biology, The Technical Information Center, Office of Information Services, United State Atomic Energy Commission, G. W. Woodwell and E. V. Pecan, Eds., Upton, NY, 1972, pp. 86–133. | es_ES |