- -

Enhancement of the processing window and performance of polyamide 1010/bio-based high-density polyethylene blends by melt mixing with natural additives

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Enhancement of the processing window and performance of polyamide 1010/bio-based high-density polyethylene blends by melt mixing with natural additives

Show full item record

Quiles-Carrillo, L.; Montanes, N.; Fombuena, V.; Balart, R.; Torres-Giner, S. (2020). Enhancement of the processing window and performance of polyamide 1010/bio-based high-density polyethylene blends by melt mixing with natural additives. Polymer International. 69(1):61-71. https://doi.org/10.1002/pi.5919

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161383

Files in this item

Item Metadata

Title: Enhancement of the processing window and performance of polyamide 1010/bio-based high-density polyethylene blends by melt mixing with natural additives
Author: Quiles-Carrillo, Luis Montanes, Nestor Fombuena, Vicent Balart, Rafael Torres-Giner, Sergio
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Issued date:
[EN] This work reports the enhancement of the processing window and the mechanical and thermal properties of biopolymer blends of polyamide 1010 (PA1010) and bio-based high-density polyethylene (bio-HDPE) at 70/30 (wt/wt) ...[+]
Subjects: PA1010 , Green polyethylene , Thermal stability , Mechanical properties , Secondary recycling
Copyrigths: Reserva de todos los derechos
Polymer International. (issn: 0959-8103 )
DOI: 10.1002/pi.5919
John Wiley & Sons
Publisher version: https://doi.org/10.1002/pi.5919
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
This research was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R. LQ-C and ST-G are recipients of an FPU grant (FPU15/03812) ...[+]
Type: Artículo


Carole, T. M., Pellegrino, J., & Paster, M. D. (2004). Opportunities in the Industrial Biobased Products Industry. Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, 871-885. doi:10.1007/978-1-59259-837-3_71

OGUNNIYI, D. (2006). Castor oil: A vital industrial raw material. Bioresource Technology, 97(9), 1086-1091. doi:10.1016/j.biortech.2005.03.028

Kausar, A. (2017). Polyamide 1010/Polythioamide Blend Reinforced with Graphene Nanoplatelet for Automotive Part Application. Advances in Materials Science, 17(3), 24-36. doi:10.1515/adms-2017-0013 [+]
Carole, T. M., Pellegrino, J., & Paster, M. D. (2004). Opportunities in the Industrial Biobased Products Industry. Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, 871-885. doi:10.1007/978-1-59259-837-3_71

OGUNNIYI, D. (2006). Castor oil: A vital industrial raw material. Bioresource Technology, 97(9), 1086-1091. doi:10.1016/j.biortech.2005.03.028

Kausar, A. (2017). Polyamide 1010/Polythioamide Blend Reinforced with Graphene Nanoplatelet for Automotive Part Application. Advances in Materials Science, 17(3), 24-36. doi:10.1515/adms-2017-0013

Nishitani, Y., Kajiyama, T., & Yamanaka, T. (2017). Effect of Silane Coupling Agent on Tribological Properties of Hemp Fiber-Reinforced Plant-Derived Polyamide 1010 Biomass Composites. Materials, 10(9), 1040. doi:10.3390/ma10091040

Boros, R., Rajamani, P., & Kovács, J. (2018). Thermoplastic Overmolding onto Injection-Molded and In Situ Polymerization-Based Polyamides. Materials, 11(11), 2140. doi:10.3390/ma11112140

Del Nobile, M. A., Buonocore, G. G., Palmieri, L., Aldi, A., & Acierno, D. (2002). Moisture transport properties of polyamides copolymers intended for food packaging applications. Journal of Food Engineering, 53(3), 287-293. doi:10.1016/s0260-8774(01)00167-4

Nishida, H. (2011). Development of materials and technologies for control of polymer recycling. Polymer Journal, 43(5), 435-447. doi:10.1038/pj.2011.16

Singh, R., Kumar, R., Ranjan, N., Penna, R., & Fraternali, F. (2018). On the recyclability of polyamide for sustainable composite structures in civil engineering. Composite Structures, 184, 704-713. doi:10.1016/j.compstruct.2017.10.036

Laryea-Goldsmith, R., Oakey, J., & Simms, N. J. (2011). Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste. Chemistry Central Journal, 5(1). doi:10.1186/1752-153x-5-4

Kumar, S., Panda, A. K., & Singh, R. K. (2011). A review on tertiary recycling of high-density polyethylene to fuel. Resources, Conservation and Recycling, 55(11), 893-910. doi:10.1016/j.resconrec.2011.05.005

Araújo, J. R., Waldman, W. R., & De Paoli, M. A. (2008). Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect. Polymer Degradation and Stability, 93(10), 1770-1775. doi:10.1016/j.polymdegradstab.2008.07.021

Sangroniz, L., Moncerrate, M. A., De Amicis, V. A., Palacios, J. K., Fernández, M., Santamaria, A., … Müller, A. J. (2015). The outstanding ability of nanosilica to stabilize dispersions of Nylon 6 droplets in a polypropylene matrix. Journal of Polymer Science Part B: Polymer Physics, 53(22), 1567-1579. doi:10.1002/polb.23786

Sahnoune, M., Taguet, A., Otazaghine, B., Kaci, M., & Lopez-Cuesta, J.-M. (2016). Inner surface modification of halloysite nanotubes and its influence on morphology and thermal properties of polystyrene/polyamide-11 blends. Polymer International, 66(2), 300-312. doi:10.1002/pi.5266

Lim, M.-Y., Oh, J., Kim, H. J., Kim, K. Y., Lee, S.-S., & Lee, J.-C. (2015). Effect of antioxidant grafted graphene oxides on the mechanical and thermal properties of polyketone composites. European Polymer Journal, 69, 156-167. doi:10.1016/j.eurpolymj.2015.06.009

Samper, M. D., Fages, E., Fenollar, O., Boronat, T., & Balart, R. (2012). The potential of flavonoids as natural antioxidants and UV light stabilizers for polypropylene. Journal of Applied Polymer Science, 129(4), 1707-1716. doi:10.1002/app.38871

Raspo, M. A., Gomez, C. G., & Andreatta, A. E. (2018). Optimization of antioxidant, mechanical and chemical physical properties of chitosan-sorbitol-gallic acid films by response surface methodology. Polymer Testing, 70, 180-187. doi:10.1016/j.polymertesting.2018.07.003

Graham, H. N. (1992). Green tea composition, consumption, and polyphenol chemistry. Preventive Medicine, 21(3), 334-350. doi:10.1016/0091-7435(92)90041-f

Yilmaz, Y., & Toledo, R. T. (2003). Major Flavonoids in Grape Seeds and Skins:  Antioxidant Capacity of Catechin, Epicatechin, and Gallic Acid. Journal of Agricultural and Food Chemistry, 52(2), 255-260. doi:10.1021/jf030117h

Vourdoubas, J., & Skoulou, V. K. (2017). Possibilities of Upgrading Solid Underutilized Lingo-cellulosic Feedstock (Carob Pods) to Liquid Bio-fuel: Bio-ethanol Production and Electricity Generation in Fuel Cells - A Critical Appraisal of the Required Processes. Studies in Engineering and Technology, 4(1), 25. doi:10.11114/set.v4i1.2170

Macosko, C. W., Guégan, P., Khandpur, A. K., Nakayama, A., Marechal, P., & Inoue, T. (1996). Compatibilizers for Melt Blending:  Premade Block Copolymers. Macromolecules, 29(17), 5590-5598. doi:10.1021/ma9602482

Kumar, A., Rao, T. V., Chowdhury, S. R., & Reddy, S. V. S. R. (2017). Effect of electron beam irradiation on thermal and mechanical properties of poly (lactic acid)/poly (ethylene-co-glycidyl methacrylate) blend. doi:10.1063/1.4984186

Aróstegui, A., & Nazábal, J. (2003). Supertoughness and critical interparticle distance dependence in poly(butylene terephthalate) and poly(ethylene-co-glycidyl methacrylate) blends. Journal of Polymer Science Part B: Polymer Physics, 41(19), 2236-2247. doi:10.1002/polb.10582

Sheng, J., Ma, H., Yuan, X.-B., Yuan, X.-Y., Shen, N.-X., & Bian, D.-C. (2000). Relation of chain constitution with phase structure in blends: compatibility of two phases in blends of polyamide with low-density polyethylene and its ionomers. Journal of Applied Polymer Science, 76(4), 488-494. doi:10.1002/(sici)1097-4628(20000425)76:4<488::aid-app6>3.0.co;2-6

Garcia-Garcia, D., Ferri, J. M., Montanes, N., Lopez-Martinez, J., & Balart, R. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International, 65(10), 1157-1164. doi:10.1002/pi.5164

Mosiewicki, M. A., & Aranguren, M. I. (2015). Recent developments in plant oil based functional materials. Polymer International, 65(1), 28-38. doi:10.1002/pi.5033

Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031

Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013

Liu, K., Madbouly, S. A., & Kessler, M. R. (2015). Biorenewable thermosetting copolymer based on soybean oil and eugenol. European Polymer Journal, 69, 16-28. doi:10.1016/j.eurpolymj.2015.05.021

Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039

Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339

Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082

Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329

Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062

Miao, S., Wang, P., Su, Z., & Zhang, S. (2014). Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia, 10(4), 1692-1704. doi:10.1016/j.actbio.2013.08.040

Aguero, A., Quiles‐Carrillo, L., Jorda‐Vilaplana, A., Fenollar, O., & Montanes, N. (2019). Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth. Polymer International, 68(5), 893-903. doi:10.1002/pi.5779

Yan, M., & Yang, H. (2012). Improvement of polyamide 1010 with silica nanospheres via in situ melt polycondensation. Polymer Composites, 33(10), 1770-1776. doi:10.1002/pc.22318

Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2

Scaffaro, R., Mistretta, M. C., La Mantia, F. P., Gleria, M., Bertani, R., Samperi, F., & Puglisi, C. (2006). On the Preparation and Characterization of Polyethylene/Polyamide Blends by Melt Processing in the Presence of an Ethylene/Acrylic Acid Copolymer and of New Phosphazene Compounds. Macromolecular Chemistry and Physics, 207(21), 1986-1997. doi:10.1002/macp.200600332

Wu, J., Chen, S., Ge, S., Miao, J., Li, J., & Zhang, Q. (2013). Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocolloids, 32(1), 42-51. doi:10.1016/j.foodhyd.2012.11.029

Ambrogi, V., Cerruti, P., Carfagna, C., Malinconico, M., Marturano, V., Perrotti, M., & Persico, P. (2011). Natural antioxidants for polypropylene stabilization. Polymer Degradation and Stability, 96(12), 2152-2158. doi:10.1016/j.polymdegradstab.2011.09.015

Jamshidian, M., Tehrany, E. A., Imran, M., Akhtar, M. J., Cleymand, F., & Desobry, S. (2012). Structural, mechanical and barrier properties of active PLA–antioxidant films. Journal of Food Engineering, 110(3), 380-389. doi:10.1016/j.jfoodeng.2011.12.034

Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031

Halld�n, �sa, Ohlsson, B., & Wessl�n, B. (2000). Poly(ethylene-graft-ethylene oxide) (PE-PEO) and poly(ethylene-co-acrylic acid) (PEAA) as compatibilizers in blends of LDPE and polyamide-6. Journal of Applied Polymer Science, 78(13), 2416-2424. doi:10.1002/1097-4628(20001220)78:13<2416::aid-app190>3.0.co;2-t

Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063

Mistretta, M. C., Fontana, P., Ceraulo, M., Morreale, M., & La Mantia, F. P. (2015). Effect of compatibilization on the photo-oxidation behaviour of polyethylene/polyamide 6 blends and their nanocomposites. Polymer Degradation and Stability, 112, 192-197. doi:10.1016/j.polymdegradstab.2015.01.002

Utracki, L. A. (2002). Compatibilization of Polymer Blends. The Canadian Journal of Chemical Engineering, 80(6), 1008-1016. doi:10.1002/cjce.5450800601

Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R., & Torres-Giner, S. (2018). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science, 136(16), 47396. doi:10.1002/app.47396

Carbonell-Verdu, A., Garcia-Sanoguera, D., Jordá-Vilaplana, A., Sanchez-Nacher, L., & Balart, R. (2016). A new biobased plasticizer for poly(vinyl chloride) based on epoxidized cottonseed oil. Journal of Applied Polymer Science, 133(27). doi:10.1002/app.43642

Petrović, Z. S., Ionescu, M., Milić, J., & Halladay, J. R. (2013). SOYBEAN OIL PLASTICIZERS AS REPLACEMENT OF PETROLEUM OIL IN RUBBER. Rubber Chemistry and Technology, 86(2), 233-249. doi:10.5254/rct.13.87992

Wang, Q., Qi, R., Shen, Y., Liu, Q., & Zhou, C. (2007). Effect of high-density polyethylene-g-maleic anhydride on the morphology and properties of (high-density polyethylene)/(ethylene-vinyl alcohol) copolymer alloys. Journal of Applied Polymer Science, 106(5), 3220-3226. doi:10.1002/app.26097

Li, H., & Li, Z. (1999). The effect of reactive compatibilization of carboxylated polystyrene on morphology and toughness of polyamide-1010/polystyrene blends. Polymer International, 48(2), 124-128. doi:10.1002/(sici)1097-0126(199902)48:2<124::aid-pi115>3.0.co;2-f

Porubská, M., Szöllős, O., Kóňová, A., Janigová, I., Jašková, M., Jomová, K., & Chodák, I. (2012). FTIR spectroscopy study of polyamide-6 irradiated by electron and proton beams. Polymer Degradation and Stability, 97(4), 523-531. doi:10.1016/j.polymdegradstab.2012.01.017

Pai, F.-C., Lai, S.-M., & Chu, H.-H. (2013). Characterization and Properties of Reactive Poly(lactic acid)/Polyamide 610 Biomass Blends. Journal of Applied Polymer Science, 130(4), 2563-2571. doi:10.1002/app.39473

Elzein, T., Brogly, M., & Schultz, J. (2002). Crystallinity measurements of polyamides adsorbed as thin films. Polymer, 43(17), 4811-4822. doi:10.1016/s0032-3861(02)00239-2

Rhee, S., & White, J. L. (2002). Investigation of structure development in polyamide 11 and polyamide 12 tubular film extrusion. Polymer Engineering & Science, 42(1), 134-145. doi:10.1002/pen.10934

Vasanthan, N., & Salem, D. R. (2001). FTIR spectroscopic characterization of structural changes in polyamide-6 fibers during annealing and drawing. Journal of Polymer Science Part B: Polymer Physics, 39(5), 536-547. doi:10.1002/1099-0488(20010301)39:5<536::aid-polb1027>3.0.co;2-8

Neo, Y. P., Ray, S., Jin, J., Gizdavic-Nikolaidis, M., Nieuwoudt, M. K., Liu, D., & Quek, S. Y. (2013). Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein–gallic acid system. Food Chemistry, 136(2), 1013-1021. doi:10.1016/j.foodchem.2012.09.010

Markarian, S. A., Zatikyan, A. L., Bonora, S., & Fagnano, C. (2003). Raman and FT IR ATR study of diethylsulfoxide/water mixtures. Journal of Molecular Structure, 655(2), 285-292. doi:10.1016/s0022-2860(03)00313-2

Wu, C. H., & Su, A. C. (1991). Functionalization of ethylene-propylene rubber via melt mixing. Polymer Engineering and Science, 31(23), 1629-1636. doi:10.1002/pen.760312302

Logakis, E., Pandis, C., Peoglos, V., Pissis, P., Stergiou, C., Pionteck, J., … Omastová, M. (2009). Structure-property relationships in polyamide 6/multi-walled carbon nanotubes nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 47(8), 764-774. doi:10.1002/polb.21681

Yang, J., Dong, W., Luan, Y., Liu, J., Liu, S., Guo, X., … Su, W. (2002). Crystallization and crosslinking of polyamide-1010 under elevated pressure. Journal of Applied Polymer Science, 83(12), 2522-2527. doi:10.1002/app.10193

Pasanphan, W., Buettner, G. R., & Chirachanchai, S. (2008). Chitosan conjugated with deoxycholic acid and gallic acid: A novel biopolymer-based additive antioxidant for polyethylene. Journal of Applied Polymer Science, 109(1), 38-46. doi:10.1002/app.27953

Ferri, J. M., Samper, M. D., García-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 51(11), 5356-5366. doi:10.1007/s10853-016-9838-2

Pagacz, J., Raftopoulos, K. N., Leszczyńska, A., & Pielichowski, K. (2015). Bio-polyamides based on renewable raw materials. Journal of Thermal Analysis and Calorimetry, 123(2), 1225-1237. doi:10.1007/s10973-015-4929-x

Prevorsek, D. C., Butler, R. H., & Reimschuessel, H. K. (1971). Mechanical relaxations in polyamides. Journal of Polymer Science Part A-2: Polymer Physics, 9(5), 867-886. doi:10.1002/pol.1971.160090508

Zhao, C., Hu, G., Justice, R., Schaefer, D. W., Zhang, S., Yang, M., & Han, C. C. (2005). Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer, 46(14), 5125-5132. doi:10.1016/j.polymer.2005.04.065

Urman, K., & Otaigbe, J. (2005). Novel phosphate glass/polyamide 6 hybrids: Miscibility, crystallization kinetics, and mechanical properties. Journal of Polymer Science Part B: Polymer Physics, 44(2), 441-450. doi:10.1002/polb.20708

Halldén, Å., Deriss, M. J., & Wesslén, B. (2001). Morphology of LDPE/PA-6 blends compatibilised with poly(ethylene-graft-ethylene oxide)s. Polymer, 42(21), 8743-8751. doi:10.1016/s0032-3861(01)00452-9

Muthuraj, R., Misra, M., & Mohanty, A. K. (2017). Biodegradable biocomposites from poly(butylene adipate-co -terephthalate) and miscanthus: Preparation, compatibilization, and performance evaluation. Journal of Applied Polymer Science, 134(43), 45448. doi:10.1002/app.45448




This item appears in the following Collection(s)

Show full item record