Mostrar el registro sencillo del ítem
dc.contributor.author | Quiles-Carrillo, Luis | es_ES |
dc.contributor.author | Montanes, Nestor | es_ES |
dc.contributor.author | Fombuena, Vicent | es_ES |
dc.contributor.author | Balart, Rafael | es_ES |
dc.contributor.author | Torres-Giner, Sergio | es_ES |
dc.date.accessioned | 2021-02-16T04:32:12Z | |
dc.date.available | 2021-02-16T04:32:12Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.issn | 0959-8103 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161383 | |
dc.description.abstract | [EN] This work reports the enhancement of the processing window and the mechanical and thermal properties of biopolymer blends of polyamide 1010 (PA1010) and bio-based high-density polyethylene (bio-HDPE) at 70/30 (wt/wt) achieved by means of natural additives. The overall performance of the binary blend melt-mixed without additives was poor due to both the relatively low thermal stability of bio-HDPE at the processing temperatures of PA1010, that is, 210¿240 ºC, and the lack or poor miscibility between the two biopolymers. Gallic acid (GA), a natural phenolic compound, was added at 0.8 parts per hundred resin (phr) of biopolymer blend to enhance the thermal stability of the green polyolefin and therefore enlarge the processing window of the binary blend. Maleinized linseed oil (MLO), a multi-functionalized vegetable oil, was then incorporated at 5 phr to compatibilize the biopolymers and its performance was also compared with that of a conventional petroleum-derived copolymer, namely, poly(ethylene-co-acrylic acid) (PE-co-AA). The resultant biopolymer blends showed a remarkable enhancement in the thermal stability and also improved toughness when both natural additives were combined. This work can potentially serve as a sound base study for the mechanical recycling of similar blends based on bio-based but non-biodegradable polymers. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R. LQ-C and ST-G are recipients of an FPU grant (FPU15/03812) from the Spanish Ministry of Education, Culture, and Sports (MECD) and a Juan de la Cierva-Incorporacion contract (IJCI-2016-29675) from MICIU, respectively. The microscopy services at Universitat Politecnica de Valencia (UPV) are acknowledged for their help in collecting and analysing FESEM images. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Polymer International | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | PA1010 | es_ES |
dc.subject | Green polyethylene | es_ES |
dc.subject | Thermal stability | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Secondary recycling | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Enhancement of the processing window and performance of polyamide 1010/bio-based high-density polyethylene blends by melt mixing with natural additives | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/pi.5919 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.description.bibliographicCitation | Quiles-Carrillo, L.; Montanes, N.; Fombuena, V.; Balart, R.; Torres-Giner, S. (2020). Enhancement of the processing window and performance of polyamide 1010/bio-based high-density polyethylene blends by melt mixing with natural additives. Polymer International. 69(1):61-71. https://doi.org/10.1002/pi.5919 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/pi.5919 | es_ES |
dc.description.upvformatpinicio | 61 | es_ES |
dc.description.upvformatpfin | 71 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 69 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\397232 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Carole, T. M., Pellegrino, J., & Paster, M. D. (2004). Opportunities in the Industrial Biobased Products Industry. Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, 871-885. doi:10.1007/978-1-59259-837-3_71 | es_ES |
dc.description.references | OGUNNIYI, D. (2006). Castor oil: A vital industrial raw material. Bioresource Technology, 97(9), 1086-1091. doi:10.1016/j.biortech.2005.03.028 | es_ES |
dc.description.references | Kausar, A. (2017). Polyamide 1010/Polythioamide Blend Reinforced with Graphene Nanoplatelet for Automotive Part Application. Advances in Materials Science, 17(3), 24-36. doi:10.1515/adms-2017-0013 | es_ES |
dc.description.references | Nishitani, Y., Kajiyama, T., & Yamanaka, T. (2017). Effect of Silane Coupling Agent on Tribological Properties of Hemp Fiber-Reinforced Plant-Derived Polyamide 1010 Biomass Composites. Materials, 10(9), 1040. doi:10.3390/ma10091040 | es_ES |
dc.description.references | Boros, R., Rajamani, P., & Kovács, J. (2018). Thermoplastic Overmolding onto Injection-Molded and In Situ Polymerization-Based Polyamides. Materials, 11(11), 2140. doi:10.3390/ma11112140 | es_ES |
dc.description.references | Del Nobile, M. A., Buonocore, G. G., Palmieri, L., Aldi, A., & Acierno, D. (2002). Moisture transport properties of polyamides copolymers intended for food packaging applications. Journal of Food Engineering, 53(3), 287-293. doi:10.1016/s0260-8774(01)00167-4 | es_ES |
dc.description.references | Nishida, H. (2011). Development of materials and technologies for control of polymer recycling. Polymer Journal, 43(5), 435-447. doi:10.1038/pj.2011.16 | es_ES |
dc.description.references | Singh, R., Kumar, R., Ranjan, N., Penna, R., & Fraternali, F. (2018). On the recyclability of polyamide for sustainable composite structures in civil engineering. Composite Structures, 184, 704-713. doi:10.1016/j.compstruct.2017.10.036 | es_ES |
dc.description.references | Laryea-Goldsmith, R., Oakey, J., & Simms, N. J. (2011). Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste. Chemistry Central Journal, 5(1). doi:10.1186/1752-153x-5-4 | es_ES |
dc.description.references | Kumar, S., Panda, A. K., & Singh, R. K. (2011). A review on tertiary recycling of high-density polyethylene to fuel. Resources, Conservation and Recycling, 55(11), 893-910. doi:10.1016/j.resconrec.2011.05.005 | es_ES |
dc.description.references | Araújo, J. R., Waldman, W. R., & De Paoli, M. A. (2008). Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect. Polymer Degradation and Stability, 93(10), 1770-1775. doi:10.1016/j.polymdegradstab.2008.07.021 | es_ES |
dc.description.references | Sangroniz, L., Moncerrate, M. A., De Amicis, V. A., Palacios, J. K., Fernández, M., Santamaria, A., … Müller, A. J. (2015). The outstanding ability of nanosilica to stabilize dispersions of Nylon 6 droplets in a polypropylene matrix. Journal of Polymer Science Part B: Polymer Physics, 53(22), 1567-1579. doi:10.1002/polb.23786 | es_ES |
dc.description.references | Sahnoune, M., Taguet, A., Otazaghine, B., Kaci, M., & Lopez-Cuesta, J.-M. (2016). Inner surface modification of halloysite nanotubes and its influence on morphology and thermal properties of polystyrene/polyamide-11 blends. Polymer International, 66(2), 300-312. doi:10.1002/pi.5266 | es_ES |
dc.description.references | Lim, M.-Y., Oh, J., Kim, H. J., Kim, K. Y., Lee, S.-S., & Lee, J.-C. (2015). Effect of antioxidant grafted graphene oxides on the mechanical and thermal properties of polyketone composites. European Polymer Journal, 69, 156-167. doi:10.1016/j.eurpolymj.2015.06.009 | es_ES |
dc.description.references | Samper, M. D., Fages, E., Fenollar, O., Boronat, T., & Balart, R. (2012). The potential of flavonoids as natural antioxidants and UV light stabilizers for polypropylene. Journal of Applied Polymer Science, 129(4), 1707-1716. doi:10.1002/app.38871 | es_ES |
dc.description.references | Raspo, M. A., Gomez, C. G., & Andreatta, A. E. (2018). Optimization of antioxidant, mechanical and chemical physical properties of chitosan-sorbitol-gallic acid films by response surface methodology. Polymer Testing, 70, 180-187. doi:10.1016/j.polymertesting.2018.07.003 | es_ES |
dc.description.references | Graham, H. N. (1992). Green tea composition, consumption, and polyphenol chemistry. Preventive Medicine, 21(3), 334-350. doi:10.1016/0091-7435(92)90041-f | es_ES |
dc.description.references | Yilmaz, Y., & Toledo, R. T. (2003). Major Flavonoids in Grape Seeds and Skins: Antioxidant Capacity of Catechin, Epicatechin, and Gallic Acid. Journal of Agricultural and Food Chemistry, 52(2), 255-260. doi:10.1021/jf030117h | es_ES |
dc.description.references | Vourdoubas, J., & Skoulou, V. K. (2017). Possibilities of Upgrading Solid Underutilized Lingo-cellulosic Feedstock (Carob Pods) to Liquid Bio-fuel: Bio-ethanol Production and Electricity Generation in Fuel Cells - A Critical Appraisal of the Required Processes. Studies in Engineering and Technology, 4(1), 25. doi:10.11114/set.v4i1.2170 | es_ES |
dc.description.references | Macosko, C. W., Guégan, P., Khandpur, A. K., Nakayama, A., Marechal, P., & Inoue, T. (1996). Compatibilizers for Melt Blending: Premade Block Copolymers. Macromolecules, 29(17), 5590-5598. doi:10.1021/ma9602482 | es_ES |
dc.description.references | Kumar, A., Rao, T. V., Chowdhury, S. R., & Reddy, S. V. S. R. (2017). Effect of electron beam irradiation on thermal and mechanical properties of poly (lactic acid)/poly (ethylene-co-glycidyl methacrylate) blend. doi:10.1063/1.4984186 | es_ES |
dc.description.references | Aróstegui, A., & Nazábal, J. (2003). Supertoughness and critical interparticle distance dependence in poly(butylene terephthalate) and poly(ethylene-co-glycidyl methacrylate) blends. Journal of Polymer Science Part B: Polymer Physics, 41(19), 2236-2247. doi:10.1002/polb.10582 | es_ES |
dc.description.references | Sheng, J., Ma, H., Yuan, X.-B., Yuan, X.-Y., Shen, N.-X., & Bian, D.-C. (2000). Relation of chain constitution with phase structure in blends: compatibility of two phases in blends of polyamide with low-density polyethylene and its ionomers. Journal of Applied Polymer Science, 76(4), 488-494. doi:10.1002/(sici)1097-4628(20000425)76:4<488::aid-app6>3.0.co;2-6 | es_ES |
dc.description.references | Garcia-Garcia, D., Ferri, J. M., Montanes, N., Lopez-Martinez, J., & Balart, R. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International, 65(10), 1157-1164. doi:10.1002/pi.5164 | es_ES |
dc.description.references | Mosiewicki, M. A., & Aranguren, M. I. (2015). Recent developments in plant oil based functional materials. Polymer International, 65(1), 28-38. doi:10.1002/pi.5033 | es_ES |
dc.description.references | Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031 | es_ES |
dc.description.references | Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013 | es_ES |
dc.description.references | Liu, K., Madbouly, S. A., & Kessler, M. R. (2015). Biorenewable thermosetting copolymer based on soybean oil and eugenol. European Polymer Journal, 69, 16-28. doi:10.1016/j.eurpolymj.2015.05.021 | es_ES |
dc.description.references | Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039 | es_ES |
dc.description.references | Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339 | es_ES |
dc.description.references | Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082 | es_ES |
dc.description.references | Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062 | es_ES |
dc.description.references | Miao, S., Wang, P., Su, Z., & Zhang, S. (2014). Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia, 10(4), 1692-1704. doi:10.1016/j.actbio.2013.08.040 | es_ES |
dc.description.references | Aguero, A., Quiles‐Carrillo, L., Jorda‐Vilaplana, A., Fenollar, O., & Montanes, N. (2019). Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth. Polymer International, 68(5), 893-903. doi:10.1002/pi.5779 | es_ES |
dc.description.references | Yan, M., & Yang, H. (2012). Improvement of polyamide 1010 with silica nanospheres via in situ melt polycondensation. Polymer Composites, 33(10), 1770-1776. doi:10.1002/pc.22318 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2 | es_ES |
dc.description.references | Scaffaro, R., Mistretta, M. C., La Mantia, F. P., Gleria, M., Bertani, R., Samperi, F., & Puglisi, C. (2006). On the Preparation and Characterization of Polyethylene/Polyamide Blends by Melt Processing in the Presence of an Ethylene/Acrylic Acid Copolymer and of New Phosphazene Compounds. Macromolecular Chemistry and Physics, 207(21), 1986-1997. doi:10.1002/macp.200600332 | es_ES |
dc.description.references | Wu, J., Chen, S., Ge, S., Miao, J., Li, J., & Zhang, Q. (2013). Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocolloids, 32(1), 42-51. doi:10.1016/j.foodhyd.2012.11.029 | es_ES |
dc.description.references | Ambrogi, V., Cerruti, P., Carfagna, C., Malinconico, M., Marturano, V., Perrotti, M., & Persico, P. (2011). Natural antioxidants for polypropylene stabilization. Polymer Degradation and Stability, 96(12), 2152-2158. doi:10.1016/j.polymdegradstab.2011.09.015 | es_ES |
dc.description.references | Jamshidian, M., Tehrany, E. A., Imran, M., Akhtar, M. J., Cleymand, F., & Desobry, S. (2012). Structural, mechanical and barrier properties of active PLA–antioxidant films. Journal of Food Engineering, 110(3), 380-389. doi:10.1016/j.jfoodeng.2011.12.034 | es_ES |
dc.description.references | Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031 | es_ES |
dc.description.references | Halld�n, �sa, Ohlsson, B., & Wessl�n, B. (2000). Poly(ethylene-graft-ethylene oxide) (PE-PEO) and poly(ethylene-co-acrylic acid) (PEAA) as compatibilizers in blends of LDPE and polyamide-6. Journal of Applied Polymer Science, 78(13), 2416-2424. doi:10.1002/1097-4628(20001220)78:13<2416::aid-app190>3.0.co;2-t | es_ES |
dc.description.references | Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063 | es_ES |
dc.description.references | Mistretta, M. C., Fontana, P., Ceraulo, M., Morreale, M., & La Mantia, F. P. (2015). Effect of compatibilization on the photo-oxidation behaviour of polyethylene/polyamide 6 blends and their nanocomposites. Polymer Degradation and Stability, 112, 192-197. doi:10.1016/j.polymdegradstab.2015.01.002 | es_ES |
dc.description.references | Utracki, L. A. (2002). Compatibilization of Polymer Blends. The Canadian Journal of Chemical Engineering, 80(6), 1008-1016. doi:10.1002/cjce.5450800601 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R., & Torres-Giner, S. (2018). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science, 136(16), 47396. doi:10.1002/app.47396 | es_ES |
dc.description.references | Carbonell-Verdu, A., Garcia-Sanoguera, D., Jordá-Vilaplana, A., Sanchez-Nacher, L., & Balart, R. (2016). A new biobased plasticizer for poly(vinyl chloride) based on epoxidized cottonseed oil. Journal of Applied Polymer Science, 133(27). doi:10.1002/app.43642 | es_ES |
dc.description.references | Petrović, Z. S., Ionescu, M., Milić, J., & Halladay, J. R. (2013). SOYBEAN OIL PLASTICIZERS AS REPLACEMENT OF PETROLEUM OIL IN RUBBER. Rubber Chemistry and Technology, 86(2), 233-249. doi:10.5254/rct.13.87992 | es_ES |
dc.description.references | Wang, Q., Qi, R., Shen, Y., Liu, Q., & Zhou, C. (2007). Effect of high-density polyethylene-g-maleic anhydride on the morphology and properties of (high-density polyethylene)/(ethylene-vinyl alcohol) copolymer alloys. Journal of Applied Polymer Science, 106(5), 3220-3226. doi:10.1002/app.26097 | es_ES |
dc.description.references | Li, H., & Li, Z. (1999). The effect of reactive compatibilization of carboxylated polystyrene on morphology and toughness of polyamide-1010/polystyrene blends. Polymer International, 48(2), 124-128. doi:10.1002/(sici)1097-0126(199902)48:2<124::aid-pi115>3.0.co;2-f | es_ES |
dc.description.references | Porubská, M., Szöllős, O., Kóňová, A., Janigová, I., Jašková, M., Jomová, K., & Chodák, I. (2012). FTIR spectroscopy study of polyamide-6 irradiated by electron and proton beams. Polymer Degradation and Stability, 97(4), 523-531. doi:10.1016/j.polymdegradstab.2012.01.017 | es_ES |
dc.description.references | Pai, F.-C., Lai, S.-M., & Chu, H.-H. (2013). Characterization and Properties of Reactive Poly(lactic acid)/Polyamide 610 Biomass Blends. Journal of Applied Polymer Science, 130(4), 2563-2571. doi:10.1002/app.39473 | es_ES |
dc.description.references | Elzein, T., Brogly, M., & Schultz, J. (2002). Crystallinity measurements of polyamides adsorbed as thin films. Polymer, 43(17), 4811-4822. doi:10.1016/s0032-3861(02)00239-2 | es_ES |
dc.description.references | Rhee, S., & White, J. L. (2002). Investigation of structure development in polyamide 11 and polyamide 12 tubular film extrusion. Polymer Engineering & Science, 42(1), 134-145. doi:10.1002/pen.10934 | es_ES |
dc.description.references | Vasanthan, N., & Salem, D. R. (2001). FTIR spectroscopic characterization of structural changes in polyamide-6 fibers during annealing and drawing. Journal of Polymer Science Part B: Polymer Physics, 39(5), 536-547. doi:10.1002/1099-0488(20010301)39:5<536::aid-polb1027>3.0.co;2-8 | es_ES |
dc.description.references | Neo, Y. P., Ray, S., Jin, J., Gizdavic-Nikolaidis, M., Nieuwoudt, M. K., Liu, D., & Quek, S. Y. (2013). Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein–gallic acid system. Food Chemistry, 136(2), 1013-1021. doi:10.1016/j.foodchem.2012.09.010 | es_ES |
dc.description.references | Markarian, S. A., Zatikyan, A. L., Bonora, S., & Fagnano, C. (2003). Raman and FT IR ATR study of diethylsulfoxide/water mixtures. Journal of Molecular Structure, 655(2), 285-292. doi:10.1016/s0022-2860(03)00313-2 | es_ES |
dc.description.references | Wu, C. H., & Su, A. C. (1991). Functionalization of ethylene-propylene rubber via melt mixing. Polymer Engineering and Science, 31(23), 1629-1636. doi:10.1002/pen.760312302 | es_ES |
dc.description.references | Logakis, E., Pandis, C., Peoglos, V., Pissis, P., Stergiou, C., Pionteck, J., … Omastová, M. (2009). Structure-property relationships in polyamide 6/multi-walled carbon nanotubes nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 47(8), 764-774. doi:10.1002/polb.21681 | es_ES |
dc.description.references | Yang, J., Dong, W., Luan, Y., Liu, J., Liu, S., Guo, X., … Su, W. (2002). Crystallization and crosslinking of polyamide-1010 under elevated pressure. Journal of Applied Polymer Science, 83(12), 2522-2527. doi:10.1002/app.10193 | es_ES |
dc.description.references | Pasanphan, W., Buettner, G. R., & Chirachanchai, S. (2008). Chitosan conjugated with deoxycholic acid and gallic acid: A novel biopolymer-based additive antioxidant for polyethylene. Journal of Applied Polymer Science, 109(1), 38-46. doi:10.1002/app.27953 | es_ES |
dc.description.references | Ferri, J. M., Samper, M. D., García-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 51(11), 5356-5366. doi:10.1007/s10853-016-9838-2 | es_ES |
dc.description.references | Pagacz, J., Raftopoulos, K. N., Leszczyńska, A., & Pielichowski, K. (2015). Bio-polyamides based on renewable raw materials. Journal of Thermal Analysis and Calorimetry, 123(2), 1225-1237. doi:10.1007/s10973-015-4929-x | es_ES |
dc.description.references | Prevorsek, D. C., Butler, R. H., & Reimschuessel, H. K. (1971). Mechanical relaxations in polyamides. Journal of Polymer Science Part A-2: Polymer Physics, 9(5), 867-886. doi:10.1002/pol.1971.160090508 | es_ES |
dc.description.references | Zhao, C., Hu, G., Justice, R., Schaefer, D. W., Zhang, S., Yang, M., & Han, C. C. (2005). Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer, 46(14), 5125-5132. doi:10.1016/j.polymer.2005.04.065 | es_ES |
dc.description.references | Urman, K., & Otaigbe, J. (2005). Novel phosphate glass/polyamide 6 hybrids: Miscibility, crystallization kinetics, and mechanical properties. Journal of Polymer Science Part B: Polymer Physics, 44(2), 441-450. doi:10.1002/polb.20708 | es_ES |
dc.description.references | Halldén, Å., Deriss, M. J., & Wesslén, B. (2001). Morphology of LDPE/PA-6 blends compatibilised with poly(ethylene-graft-ethylene oxide)s. Polymer, 42(21), 8743-8751. doi:10.1016/s0032-3861(01)00452-9 | es_ES |
dc.description.references | Muthuraj, R., Misra, M., & Mohanty, A. K. (2017). Biodegradable biocomposites from poly(butylene adipate-co -terephthalate) and miscanthus: Preparation, compatibilization, and performance evaluation. Journal of Applied Polymer Science, 134(43), 45448. doi:10.1002/app.45448 | es_ES |