Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2
Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061
Liu, W. K., Belytschko, T., & Mani, A. (1986). Probabilistic finite elements for nonlinear structural dynamics. Computer Methods in Applied Mechanics and Engineering, 56(1), 61-81. doi:10.1016/0045-7825(86)90136-2
[+]
Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2
Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061
Liu, W. K., Belytschko, T., & Mani, A. (1986). Probabilistic finite elements for nonlinear structural dynamics. Computer Methods in Applied Mechanics and Engineering, 56(1), 61-81. doi:10.1016/0045-7825(86)90136-2
Licea, J. A., Villafuerte, L., & Chen-Charpentier, B. M. (2013). Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 239, 208-219. doi:10.1016/j.cam.2012.09.040
Dorini, F. A., & Cunha, M. C. C. (2008). Statistical moments of the random linear transport equation. Journal of Computational Physics, 227(19), 8541-8550. doi:10.1016/j.jcp.2008.06.002
Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279. doi:10.1016/j.physa.2018.08.024
Nouri, K., & Ranjbar, H. (2014). Mean Square Convergence of the Numerical Solution of Random Differential Equations. Mediterranean Journal of Mathematics, 12(3), 1123-1140. doi:10.1007/s00009-014-0452-8
Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046
Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation. Mediterranean Journal of Mathematics, 16(3). doi:10.1007/s00009-019-1338-6
Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Computational uncertainty quantification for random non-autonomous second order linear differential equations via adapted gPC: a comparative case study with random Fröbenius method and Monte Carlo simulation. Open Mathematics, 16(1), 1651-1666. doi:10.1515/math-2018-0134
Khudair, A. R., Haddad, S. A. M., & Khalaf, S. L. (2016). Mean Square Solutions of Second-Order Random Differential Equations by Using the Differential Transformation Method. Open Journal of Applied Sciences, 06(04), 287-297. doi:10.4236/ojapps.2016.64028
Villafuerte, L., & Chen-Charpentier, B. M. (2012). A random differential transform method: Theory and applications. Applied Mathematics Letters, 25(10), 1490-1494. doi:10.1016/j.aml.2011.12.033
Casabán, M.-C., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2016). Solving Random Homogeneous Linear Second-Order Differential Equations: A Full Probabilistic Description. Mediterranean Journal of Mathematics, 13(6), 3817-3836. doi:10.1007/s00009-016-0716-6
Gerritsma, M., van der Steen, J.-B., Vos, P., & Karniadakis, G. (2010). Time-dependent generalized polynomial chaos. Journal of Computational Physics, 229(22), 8333-8363. doi:10.1016/j.jcp.2010.07.020
Wan, X., & Karniadakis, G. E. (2006). Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures. SIAM Journal on Scientific Computing, 28(3), 901-928. doi:10.1137/050627630
Augustin, F., & Rentrop, P. (2012). Stochastic Galerkin techniques for random ordinary differential equations. Numerische Mathematik, 122(3), 399-419. doi:10.1007/s00211-012-0466-8
Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Uncertainty quantification for random parabolic equations with nonhomogeneous boundary conditions on a bounded domain via the approximation of the probability density function. Mathematical Methods in the Applied Sciences, 42(17), 5649-5667. doi:10.1002/mma.5333
Calatayud Gregori, J., Chen-Charpentier, B. M., Cortés López, J. C., & Jornet Sanz, M. (2019). Combining Polynomial Chaos Expansions and the Random Variable Transformation Technique to Approximate the Density Function of Stochastic Problems, Including Some Epidemiological Models. Symmetry, 11(1), 43. doi:10.3390/sym11010043
Scheffe, H. (1947). A Useful Convergence Theorem for Probability Distributions. The Annals of Mathematical Statistics, 18(3), 434-438. doi:10.1214/aoms/1177730390
Hellinger, E. (1909). Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. Journal für die reine und angewandte Mathematik, 1909(136), 210-271. doi:10.1515/crll.1909.136.210
Wolfram Research, Inc., Mathematica, Version 11.2, Champaign, IL, USA, 2017.
P. Le Maître, O., Mathelin, L., M. Knio, O., & Yousuff Hussaini, M. (2010). Asynchronous time integration for
polynomial chaos expansion of uncertain periodic dynamics. Discrete & Continuous Dynamical Systems - A, 28(1), 199-226. doi:10.3934/dcds.2010.28.199
Giles, M. B. (2008). Multilevel Monte Carlo Path Simulation. Operations Research, 56(3), 607-617. doi:10.1287/opre.1070.0496
Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259-328. doi:10.1017/s096249291500001x
[-]