- -

Second order linear differential equations with analytic uncertainties: stochastic analysis via the computation of the probability density function

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Second order linear differential equations with analytic uncertainties: stochastic analysis via the computation of the probability density function

Mostrar el registro completo del ítem

Jornet, M.; Calatayud, J.; Le Maître, O.; Cortés, J. (2020). Second order linear differential equations with analytic uncertainties: stochastic analysis via the computation of the probability density function. Journal of Computational and Applied Mathematics. 374:1-20. https://doi.org/10.1016/j.cam.2020.112770

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161390

Ficheros en el ítem

Metadatos del ítem

Título: Second order linear differential equations with analytic uncertainties: stochastic analysis via the computation of the probability density function
Autor: Jornet, Marc Calatayud, J. Le Maître, O.P. Cortés, J.-C.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] This paper concerns the analysis of random second order linear differential equations. Usually, solving these equations consists of computing the first statistics of the response process, and that task has been an ...[+]
Palabras clave: Random non-autonomous second order linear differential equation , Mean square analytic solution , Probability density function , Monte Carlo simulation , Uncertainty quantification
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Computational and Applied Mathematics. (issn: 0377-0427 )
DOI: 10.1016/j.cam.2020.112770
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.cam.2020.112770
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/
Agradecimientos:
This work is supported by the Spanish "Ministerio de Economia y Competitividad'' grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by PAID, Spain, as well as "Ayudas para movilidad de ...[+]
Tipo: Artículo

References

Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2

Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061

Liu, W. K., Belytschko, T., & Mani, A. (1986). Probabilistic finite elements for nonlinear structural dynamics. Computer Methods in Applied Mechanics and Engineering, 56(1), 61-81. doi:10.1016/0045-7825(86)90136-2 [+]
Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2

Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061

Liu, W. K., Belytschko, T., & Mani, A. (1986). Probabilistic finite elements for nonlinear structural dynamics. Computer Methods in Applied Mechanics and Engineering, 56(1), 61-81. doi:10.1016/0045-7825(86)90136-2

Licea, J. A., Villafuerte, L., & Chen-Charpentier, B. M. (2013). Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 239, 208-219. doi:10.1016/j.cam.2012.09.040

Dorini, F. A., & Cunha, M. C. C. (2008). Statistical moments of the random linear transport equation. Journal of Computational Physics, 227(19), 8541-8550. doi:10.1016/j.jcp.2008.06.002

Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279. doi:10.1016/j.physa.2018.08.024

Nouri, K., & Ranjbar, H. (2014). Mean Square Convergence of the Numerical Solution of Random Differential Equations. Mediterranean Journal of Mathematics, 12(3), 1123-1140. doi:10.1007/s00009-014-0452-8

Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046

Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation. Mediterranean Journal of Mathematics, 16(3). doi:10.1007/s00009-019-1338-6

Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Computational uncertainty quantification for random non-autonomous second order linear differential equations via adapted gPC: a comparative case study with random Fröbenius method and Monte Carlo simulation. Open Mathematics, 16(1), 1651-1666. doi:10.1515/math-2018-0134

Khudair, A. R., Haddad, S. A. M., & Khalaf, S. L. (2016). Mean Square Solutions of Second-Order Random Differential Equations by Using the Differential Transformation Method. Open Journal of Applied Sciences, 06(04), 287-297. doi:10.4236/ojapps.2016.64028

Villafuerte, L., & Chen-Charpentier, B. M. (2012). A random differential transform method: Theory and applications. Applied Mathematics Letters, 25(10), 1490-1494. doi:10.1016/j.aml.2011.12.033

Casabán, M.-C., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2016). Solving Random Homogeneous Linear Second-Order Differential Equations: A Full Probabilistic Description. Mediterranean Journal of Mathematics, 13(6), 3817-3836. doi:10.1007/s00009-016-0716-6

Gerritsma, M., van der Steen, J.-B., Vos, P., & Karniadakis, G. (2010). Time-dependent generalized polynomial chaos. Journal of Computational Physics, 229(22), 8333-8363. doi:10.1016/j.jcp.2010.07.020

Wan, X., & Karniadakis, G. E. (2006). Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures. SIAM Journal on Scientific Computing, 28(3), 901-928. doi:10.1137/050627630

Augustin, F., & Rentrop, P. (2012). Stochastic Galerkin techniques for random ordinary differential equations. Numerische Mathematik, 122(3), 399-419. doi:10.1007/s00211-012-0466-8

Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Uncertainty quantification for random parabolic equations with nonhomogeneous boundary conditions on a bounded domain via the approximation of the probability density function. Mathematical Methods in the Applied Sciences, 42(17), 5649-5667. doi:10.1002/mma.5333

Calatayud Gregori, J., Chen-Charpentier, B. M., Cortés López, J. C., & Jornet Sanz, M. (2019). Combining Polynomial Chaos Expansions and the Random Variable Transformation Technique to Approximate the Density Function of Stochastic Problems, Including Some Epidemiological Models. Symmetry, 11(1), 43. doi:10.3390/sym11010043

Scheffe, H. (1947). A Useful Convergence Theorem for Probability Distributions. The Annals of Mathematical Statistics, 18(3), 434-438. doi:10.1214/aoms/1177730390

Hellinger, E. (1909). Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. Journal für die reine und angewandte Mathematik, 1909(136), 210-271. doi:10.1515/crll.1909.136.210

Wolfram Research, Inc., Mathematica, Version 11.2, Champaign, IL, USA, 2017.

P. Le Maître, O., Mathelin, L., M. Knio, O., & Yousuff Hussaini, M. (2010). Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discrete & Continuous Dynamical Systems - A, 28(1), 199-226. doi:10.3934/dcds.2010.28.199

Giles, M. B. (2008). Multilevel Monte Carlo Path Simulation. Operations Research, 56(3), 607-617. doi:10.1287/opre.1070.0496

Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259-328. doi:10.1017/s096249291500001x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem