Mostrar el registro sencillo del ítem
dc.contributor.author | Jornet, Marc | es_ES |
dc.contributor.author | Calatayud, J. | es_ES |
dc.contributor.author | Le Maître, O.P. | es_ES |
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.date.accessioned | 2021-02-16T04:32:31Z | |
dc.date.available | 2021-02-16T04:32:31Z | |
dc.date.issued | 2020-08-15 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161390 | |
dc.description.abstract | [EN] This paper concerns the analysis of random second order linear differential equations. Usually, solving these equations consists of computing the first statistics of the response process, and that task has been an essential goal in the literature. A more ambitious objective is the computation of the solution probability density function. We present advances on these two aspects in the case of general random non-autonomous second order linear differential equations with analytic data processes. The Frobenius method is employed to obtain the stochastic solution in the form of a mean square convergent power series. We demonstrate that the convergence requires the boundedness of the random input coefficients. Further, the mean square error of the Frobenius method is proved to decrease exponentially with the number of terms in the series, although not uniformly in time. Regarding the probability density function of the solution at a given time, which is the focus of the paper, we rely on the law of total probability to express it in closed-form as an expectation. For the computation of this expectation, a sequence of approximating density functions is constructed by reducing the dimensionality of the problem using the truncated power series of the fundamental set. We prove several theoretical results regarding the pointwise convergence of the sequence of density functions and the convergence in total variation. The pointwise convergence turns out to be exponential under a Lipschitz hypothesis. As the density functions are expressed in terms of expectations, we propose a crude Monte Carlo sampling algorithm for their estimation. This algorithm is implemented and applied on several numerical examples designed to illustrate the theoretical findings of the paper. After that, the efficiency of the algorithm is improved by employing the control variates method. Numerical examples corroborate the variance reduction of the Monte Carlo approach. (C) 2020 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | This work is supported by the Spanish "Ministerio de Economia y Competitividad'' grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by PAID, Spain, as well as "Ayudas para movilidad de estudiantes de doctorado de la Universitat Politecnica de Valencia para estancias en 2019'', Spain, for financing his research stay at CMAP. Julia Calatayud acknowledges "Fundacio Ferran Sunyer i Balaguer'', "Institut d'Estudis Catalans'' and the award from "Borses Ferran Sunyer i Balaguer 2019'', Spain for funding her research stay at CMAP. All authors are also grateful to Inria (Centre de Saclay, DeFi Team), which hosted Marc Jornet and Julia Calatayud during their research stays at Ecole Polytechnique. The authors thank the reviewers for the valuable comments and suggestions, which have greatly enriched the quality of the paper. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Random non-autonomous second order linear differential equation | es_ES |
dc.subject | Mean square analytic solution | es_ES |
dc.subject | Probability density function | es_ES |
dc.subject | Monte Carlo simulation | es_ES |
dc.subject | Uncertainty quantification | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Second order linear differential equations with analytic uncertainties: stochastic analysis via the computation of the probability density function | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cam.2020.112770 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Jornet, M.; Calatayud, J.; Le Maître, O.; Cortés, J. (2020). Second order linear differential equations with analytic uncertainties: stochastic analysis via the computation of the probability density function. Journal of Computational and Applied Mathematics. 374:1-20. https://doi.org/10.1016/j.cam.2020.112770 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cam.2020.112770 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 374 | es_ES |
dc.relation.pasarela | S\401847 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2 | es_ES |
dc.description.references | Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061 | es_ES |
dc.description.references | Liu, W. K., Belytschko, T., & Mani, A. (1986). Probabilistic finite elements for nonlinear structural dynamics. Computer Methods in Applied Mechanics and Engineering, 56(1), 61-81. doi:10.1016/0045-7825(86)90136-2 | es_ES |
dc.description.references | Licea, J. A., Villafuerte, L., & Chen-Charpentier, B. M. (2013). Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 239, 208-219. doi:10.1016/j.cam.2012.09.040 | es_ES |
dc.description.references | Dorini, F. A., & Cunha, M. C. C. (2008). Statistical moments of the random linear transport equation. Journal of Computational Physics, 227(19), 8541-8550. doi:10.1016/j.jcp.2008.06.002 | es_ES |
dc.description.references | Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279. doi:10.1016/j.physa.2018.08.024 | es_ES |
dc.description.references | Nouri, K., & Ranjbar, H. (2014). Mean Square Convergence of the Numerical Solution of Random Differential Equations. Mediterranean Journal of Mathematics, 12(3), 1123-1140. doi:10.1007/s00009-014-0452-8 | es_ES |
dc.description.references | Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046 | es_ES |
dc.description.references | Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation. Mediterranean Journal of Mathematics, 16(3). doi:10.1007/s00009-019-1338-6 | es_ES |
dc.description.references | Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Computational uncertainty quantification for random non-autonomous second order linear differential equations via adapted gPC: a comparative case study with random Fröbenius method and Monte Carlo simulation. Open Mathematics, 16(1), 1651-1666. doi:10.1515/math-2018-0134 | es_ES |
dc.description.references | Khudair, A. R., Haddad, S. A. M., & Khalaf, S. L. (2016). Mean Square Solutions of Second-Order Random Differential Equations by Using the Differential Transformation Method. Open Journal of Applied Sciences, 06(04), 287-297. doi:10.4236/ojapps.2016.64028 | es_ES |
dc.description.references | Villafuerte, L., & Chen-Charpentier, B. M. (2012). A random differential transform method: Theory and applications. Applied Mathematics Letters, 25(10), 1490-1494. doi:10.1016/j.aml.2011.12.033 | es_ES |
dc.description.references | Casabán, M.-C., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2016). Solving Random Homogeneous Linear Second-Order Differential Equations: A Full Probabilistic Description. Mediterranean Journal of Mathematics, 13(6), 3817-3836. doi:10.1007/s00009-016-0716-6 | es_ES |
dc.description.references | Gerritsma, M., van der Steen, J.-B., Vos, P., & Karniadakis, G. (2010). Time-dependent generalized polynomial chaos. Journal of Computational Physics, 229(22), 8333-8363. doi:10.1016/j.jcp.2010.07.020 | es_ES |
dc.description.references | Wan, X., & Karniadakis, G. E. (2006). Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures. SIAM Journal on Scientific Computing, 28(3), 901-928. doi:10.1137/050627630 | es_ES |
dc.description.references | Augustin, F., & Rentrop, P. (2012). Stochastic Galerkin techniques for random ordinary differential equations. Numerische Mathematik, 122(3), 399-419. doi:10.1007/s00211-012-0466-8 | es_ES |
dc.description.references | Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Uncertainty quantification for random parabolic equations with nonhomogeneous boundary conditions on a bounded domain via the approximation of the probability density function. Mathematical Methods in the Applied Sciences, 42(17), 5649-5667. doi:10.1002/mma.5333 | es_ES |
dc.description.references | Calatayud Gregori, J., Chen-Charpentier, B. M., Cortés López, J. C., & Jornet Sanz, M. (2019). Combining Polynomial Chaos Expansions and the Random Variable Transformation Technique to Approximate the Density Function of Stochastic Problems, Including Some Epidemiological Models. Symmetry, 11(1), 43. doi:10.3390/sym11010043 | es_ES |
dc.description.references | Scheffe, H. (1947). A Useful Convergence Theorem for Probability Distributions. The Annals of Mathematical Statistics, 18(3), 434-438. doi:10.1214/aoms/1177730390 | es_ES |
dc.description.references | Hellinger, E. (1909). Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. Journal für die reine und angewandte Mathematik, 1909(136), 210-271. doi:10.1515/crll.1909.136.210 | es_ES |
dc.description.references | Wolfram Research, Inc., Mathematica, Version 11.2, Champaign, IL, USA, 2017. | es_ES |
dc.description.references | P. Le Maître, O., Mathelin, L., M. Knio, O., & Yousuff Hussaini, M. (2010). Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discrete & Continuous Dynamical Systems - A, 28(1), 199-226. doi:10.3934/dcds.2010.28.199 | es_ES |
dc.description.references | Giles, M. B. (2008). Multilevel Monte Carlo Path Simulation. Operations Research, 56(3), 607-617. doi:10.1287/opre.1070.0496 | es_ES |
dc.description.references | Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259-328. doi:10.1017/s096249291500001x | es_ES |