- -

Second order linear differential equations with analytic uncertainties: stochastic analysis via the computation of the probability density function

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Second order linear differential equations with analytic uncertainties: stochastic analysis via the computation of the probability density function

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jornet, Marc es_ES
dc.contributor.author Calatayud, J. es_ES
dc.contributor.author Le Maître, O.P. es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.date.accessioned 2021-02-16T04:32:31Z
dc.date.available 2021-02-16T04:32:31Z
dc.date.issued 2020-08-15 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161390
dc.description.abstract [EN] This paper concerns the analysis of random second order linear differential equations. Usually, solving these equations consists of computing the first statistics of the response process, and that task has been an essential goal in the literature. A more ambitious objective is the computation of the solution probability density function. We present advances on these two aspects in the case of general random non-autonomous second order linear differential equations with analytic data processes. The Frobenius method is employed to obtain the stochastic solution in the form of a mean square convergent power series. We demonstrate that the convergence requires the boundedness of the random input coefficients. Further, the mean square error of the Frobenius method is proved to decrease exponentially with the number of terms in the series, although not uniformly in time. Regarding the probability density function of the solution at a given time, which is the focus of the paper, we rely on the law of total probability to express it in closed-form as an expectation. For the computation of this expectation, a sequence of approximating density functions is constructed by reducing the dimensionality of the problem using the truncated power series of the fundamental set. We prove several theoretical results regarding the pointwise convergence of the sequence of density functions and the convergence in total variation. The pointwise convergence turns out to be exponential under a Lipschitz hypothesis. As the density functions are expressed in terms of expectations, we propose a crude Monte Carlo sampling algorithm for their estimation. This algorithm is implemented and applied on several numerical examples designed to illustrate the theoretical findings of the paper. After that, the efficiency of the algorithm is improved by employing the control variates method. Numerical examples corroborate the variance reduction of the Monte Carlo approach. (C) 2020 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This work is supported by the Spanish "Ministerio de Economia y Competitividad'' grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by PAID, Spain, as well as "Ayudas para movilidad de estudiantes de doctorado de la Universitat Politecnica de Valencia para estancias en 2019'', Spain, for financing his research stay at CMAP. Julia Calatayud acknowledges "Fundacio Ferran Sunyer i Balaguer'', "Institut d'Estudis Catalans'' and the award from "Borses Ferran Sunyer i Balaguer 2019'', Spain for funding her research stay at CMAP. All authors are also grateful to Inria (Centre de Saclay, DeFi Team), which hosted Marc Jornet and Julia Calatayud during their research stays at Ecole Polytechnique. The authors thank the reviewers for the valuable comments and suggestions, which have greatly enriched the quality of the paper. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Random non-autonomous second order linear differential equation es_ES
dc.subject Mean square analytic solution es_ES
dc.subject Probability density function es_ES
dc.subject Monte Carlo simulation es_ES
dc.subject Uncertainty quantification es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Second order linear differential equations with analytic uncertainties: stochastic analysis via the computation of the probability density function es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2020.112770 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Jornet, M.; Calatayud, J.; Le Maître, O.; Cortés, J. (2020). Second order linear differential equations with analytic uncertainties: stochastic analysis via the computation of the probability density function. Journal of Computational and Applied Mathematics. 374:1-20. https://doi.org/10.1016/j.cam.2020.112770 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cam.2020.112770 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 374 es_ES
dc.relation.pasarela S\401847 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2 es_ES
dc.description.references Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061 es_ES
dc.description.references Liu, W. K., Belytschko, T., & Mani, A. (1986). Probabilistic finite elements for nonlinear structural dynamics. Computer Methods in Applied Mechanics and Engineering, 56(1), 61-81. doi:10.1016/0045-7825(86)90136-2 es_ES
dc.description.references Licea, J. A., Villafuerte, L., & Chen-Charpentier, B. M. (2013). Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 239, 208-219. doi:10.1016/j.cam.2012.09.040 es_ES
dc.description.references Dorini, F. A., & Cunha, M. C. C. (2008). Statistical moments of the random linear transport equation. Journal of Computational Physics, 227(19), 8541-8550. doi:10.1016/j.jcp.2008.06.002 es_ES
dc.description.references Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279. doi:10.1016/j.physa.2018.08.024 es_ES
dc.description.references Nouri, K., & Ranjbar, H. (2014). Mean Square Convergence of the Numerical Solution of Random Differential Equations. Mediterranean Journal of Mathematics, 12(3), 1123-1140. doi:10.1007/s00009-014-0452-8 es_ES
dc.description.references Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046 es_ES
dc.description.references Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation. Mediterranean Journal of Mathematics, 16(3). doi:10.1007/s00009-019-1338-6 es_ES
dc.description.references Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Computational uncertainty quantification for random non-autonomous second order linear differential equations via adapted gPC: a comparative case study with random Fröbenius method and Monte Carlo simulation. Open Mathematics, 16(1), 1651-1666. doi:10.1515/math-2018-0134 es_ES
dc.description.references Khudair, A. R., Haddad, S. A. M., & Khalaf, S. L. (2016). Mean Square Solutions of Second-Order Random Differential Equations by Using the Differential Transformation Method. Open Journal of Applied Sciences, 06(04), 287-297. doi:10.4236/ojapps.2016.64028 es_ES
dc.description.references Villafuerte, L., & Chen-Charpentier, B. M. (2012). A random differential transform method: Theory and applications. Applied Mathematics Letters, 25(10), 1490-1494. doi:10.1016/j.aml.2011.12.033 es_ES
dc.description.references Casabán, M.-C., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2016). Solving Random Homogeneous Linear Second-Order Differential Equations: A Full Probabilistic Description. Mediterranean Journal of Mathematics, 13(6), 3817-3836. doi:10.1007/s00009-016-0716-6 es_ES
dc.description.references Gerritsma, M., van der Steen, J.-B., Vos, P., & Karniadakis, G. (2010). Time-dependent generalized polynomial chaos. Journal of Computational Physics, 229(22), 8333-8363. doi:10.1016/j.jcp.2010.07.020 es_ES
dc.description.references Wan, X., & Karniadakis, G. E. (2006). Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures. SIAM Journal on Scientific Computing, 28(3), 901-928. doi:10.1137/050627630 es_ES
dc.description.references Augustin, F., & Rentrop, P. (2012). Stochastic Galerkin techniques for random ordinary differential equations. Numerische Mathematik, 122(3), 399-419. doi:10.1007/s00211-012-0466-8 es_ES
dc.description.references Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Uncertainty quantification for random parabolic equations with nonhomogeneous boundary conditions on a bounded domain via the approximation of the probability density function. Mathematical Methods in the Applied Sciences, 42(17), 5649-5667. doi:10.1002/mma.5333 es_ES
dc.description.references Calatayud Gregori, J., Chen-Charpentier, B. M., Cortés López, J. C., & Jornet Sanz, M. (2019). Combining Polynomial Chaos Expansions and the Random Variable Transformation Technique to Approximate the Density Function of Stochastic Problems, Including Some Epidemiological Models. Symmetry, 11(1), 43. doi:10.3390/sym11010043 es_ES
dc.description.references Scheffe, H. (1947). A Useful Convergence Theorem for Probability Distributions. The Annals of Mathematical Statistics, 18(3), 434-438. doi:10.1214/aoms/1177730390 es_ES
dc.description.references Hellinger, E. (1909). Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. Journal für die reine und angewandte Mathematik, 1909(136), 210-271. doi:10.1515/crll.1909.136.210 es_ES
dc.description.references Wolfram Research, Inc., Mathematica, Version 11.2, Champaign, IL, USA, 2017. es_ES
dc.description.references P. Le Maître, O., Mathelin, L., M. Knio, O., & Yousuff Hussaini, M. (2010). Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discrete & Continuous Dynamical Systems - A, 28(1), 199-226. doi:10.3934/dcds.2010.28.199 es_ES
dc.description.references Giles, M. B. (2008). Multilevel Monte Carlo Path Simulation. Operations Research, 56(3), 607-617. doi:10.1287/opre.1070.0496 es_ES
dc.description.references Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259-328. doi:10.1017/s096249291500001x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem