R.E. Brown, E.R. Masanet, B. Nordman, W.F. Tschudi, A. Shehabi, J. Stanley, J.G. Koomey, D.A. Sartor, P.T. Chan, Report to congress on server and data center energy efficiency: public law 109-431, Berkeley, CA, 2008.
G. Giunta, R. Montella, G. Agrillo, G. Coviello, A GPGPU transparent virtualization component for high performance computing clouds, in: Proc. of the Euro-Par Parallel Processing, Euro-Par, 2010, pp. 379–391.
V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar, P. Ranganathan, GViM: GPU-accelerated virtual machines, in: Proc. of the ACM Workshop on System-Level Virtualization for High Performance Computing, HPCVirt, 2009, pp. 17–24.
[+]
R.E. Brown, E.R. Masanet, B. Nordman, W.F. Tschudi, A. Shehabi, J. Stanley, J.G. Koomey, D.A. Sartor, P.T. Chan, Report to congress on server and data center energy efficiency: public law 109-431, Berkeley, CA, 2008.
G. Giunta, R. Montella, G. Agrillo, G. Coviello, A GPGPU transparent virtualization component for high performance computing clouds, in: Proc. of the Euro-Par Parallel Processing, Euro-Par, 2010, pp. 379–391.
V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar, P. Ranganathan, GViM: GPU-accelerated virtual machines, in: Proc. of the ACM Workshop on System-Level Virtualization for High Performance Computing, HPCVirt, 2009, pp. 17–24.
J.A. Herdman, W.P. Gaudin, S. McIntosh-Smith, M. Boulton, D.A. Beckingsale, A.C. Mallinson, S.A. Jarvis, Accelerating hydrocodes with OpenACC, OpenCL and CUDA, in: 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, 2012.
Koomey, J. G. (2008). Worldwide electricity used in data centers. Environmental Research Letters, 3(3), 034008. doi:10.1088/1748-9326/3/3/034008
T.Y. Liang, Y.W. Chang, GridCuda: A grid-enabled CUDA programming toolkit, in: Proc. of the IEEE Advanced Information Networking and Applications Workshops, WAINA, 2011, pp. 141–146.
Maqbool, J., Oh, S., & Fox, G. C. (2015). Evaluating ARM HPC clusters for scientific workloads. Concurrency and Computation: Practice and Experience, 27(17), 5390-5410. doi:10.1002/cpe.3602
M. Martineau, S. McIntosh-Smith, Exploring on-node parallelism with neutral, a Monte Carlo neutral particle transport mini-app, in: 2017 IEEE International Conference on Cluster Computing, CLUSTER, 2017.
M. Martineau, S. McIntosh-Smith, The arch project: physics mini-apps for algorithmic exploration and evaluating programming environments on HPC architectures, in: 2017 IEEE International Conference on Cluster Computing, CLUSTER, 2017.
M. Martineau, S. McIntosh-Smith, M. Boulton, W. Gaudin, An evaluation of emerging many-core parallel programming models, in: Proceedings of the 7th International Workshop on Programming Models and Applications for Multicores and Manycores, PMAM’16, 2016.
M. Oikawa, A. Kawai, K. Nomura, K. Yasuoka, K. Yoshikawa, T. Narumi, DS-CUDA: A middleware to use many GPUs in the cloud environment, in: Proc. of the SC Companion: High Performance Computing, Networking Storage and Analysis, SCC, 2012, pp. 1207–1214.
Prades, J., Reaño, C., & Silla, F. (2018). On the effect of using rCUDA to provide CUDA acceleration to Xen virtual machines. Cluster Computing, 22(1), 185-204. doi:10.1007/s10586-018-2845-0
Prades, J., Varghese, B., Reaño, C., & Silla, F. (2017). Multi-tenant virtual GPUs for optimising performance of a financial risk application. Journal of Parallel and Distributed Computing, 108, 28-44. doi:10.1016/j.jpdc.2016.06.002
N. Rajovic, et al. The Mont-Blanc prototype: an alternative approach for HPC systems, in: SC16: International Conference for High Performance Computing, Networking, Storage and Analysis, 2016, pp. 444–455.
C. Reaño, F. Silla, A performance comparison of CUDA remote GPU virtualization frameworks, in: 2015 IEEE International Conference on Cluster Computing, 2015.
C. Reaño, F. Silla, Extending rCUDA with support for P2P memory copies between remote GPUs, in: 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems, HPCC/SmartCity/DSS, 2016.
C. Reaño, F. Silla, J. Duato, Enhancing the rCUDA remote GPU virtualization framework: From a prototype to a production solution, in: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid ’17, 2017.
C. Reaño, F. Silla, G. Shainer, S. Schultz, Local and remote GPUs perform similar with EDR 100G InfiniBand, in: Proceedings of the Industrial Track of the 16th International Middleware Conference, Middleware Industry ’15, 2015.
A. Selinger, K. Rupp, S. Selberherr, Evaluation of mobile ARM-based SoCs for high performance computing, in: Proceedings of the 24th High Performance Computing Symposium, HPC ’16, 2016, pp. 21:1–21:7.
L. Shi, H. Chen, J. Sun, vCUDA: GPU accelerated high performance computing in virtual machines, in: Proc. of the IEEE Parallel and Distributed Processing Symposium, IPDPS, 2009, pp. 1–11.
F. Silla, J. Prades, S. Iserte, C. Reaño, Remote GPU virtualization: is it useful?, in: 2016 2nd IEEE International Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data Era, HiPINEB, 2016.
F. Silla, J. Prades, C. Reaño, Leveraging rCUDA for enhancing low-power deployments in the physics domain, in: Proceedings of the 47th International Conference on Parallel Processing Companion, ICPP ’18, 2018.
[-]