- -

Evidence of viable Helicobacter pylori and other bacteria of public health interest associated with free-living amoeba in lettuce samples by next generation sequencing and other molecular techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evidence of viable Helicobacter pylori and other bacteria of public health interest associated with free-living amoeba in lettuce samples by next generation sequencing and other molecular techniques

Mostrar el registro completo del ítem

Moreno-Mesonero, L.; Hortelano, I.; Moreno Trigos, MY.; Ferrús Pérez, MA. (2020). Evidence of viable Helicobacter pylori and other bacteria of public health interest associated with free-living amoeba in lettuce samples by next generation sequencing and other molecular techniques. International Journal of Food Microbiology. 318:1-8. https://doi.org/10.1016/j.ijfoodmicro.2019.108477

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161399

Ficheros en el ítem

Metadatos del ítem

Título: Evidence of viable Helicobacter pylori and other bacteria of public health interest associated with free-living amoeba in lettuce samples by next generation sequencing and other molecular techniques
Autor: Moreno-Mesonero, Laura Hortelano, Irene Moreno Trigos, Mª Yolanda Ferrús Pérez, Mª Antonia
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Vegetables are one of the sources from which Helicobacter pylori can be acquired. This bacterium infects > 50% of the global population and is a recognized type I human carcinogen. H. pylori enters into the viable but ...[+]
Palabras clave: Lettuce , Free living amoebae , Helicobacter pylori , Microbiome , Metagenomics , Amoebae resistant bacteria
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
International Journal of Food Microbiology. (issn: 0168-1605 )
DOI: 10.1016/j.ijfoodmicro.2019.108477
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ijfoodmicro.2019.108477
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F273/
Agradecimientos:
This study has been supported by the Conselleria de Educacion, Investigacion, Cultura y Deporte, of the Community of Valencia, Spain, within the program of support for research under project AICO/2018/273. The author ...[+]
Tipo: Artículo

References

Agustí, G., Codony, F., Fittipaldi, M., Adrados, B., & Morató, J. (2010). Viability Determination of Helicobacter pylori Using Propidium Monoazide Quantitative PCR. Helicobacter, 15(5), 473-476. doi:10.1111/j.1523-5378.2010.00794.x

Andersen, A. P., Elliott, D. A., Lawson, M., Barland, P., Hatcher, V. B., & Puszkin, E. G. (1997). Growth and morphological transformations of Helicobacter pylori in broth media. Journal of Clinical Microbiology, 35(11), 2918-2922. doi:10.1128/jcm.35.11.2918-2922.1997

Azevedo, N. F., Almeida, C., Cerqueira, L., Dias, S., Keevil, C. W., & Vieira, M. J. (2007). Coccoid Form of Helicobacter pylori as a Morphological Manifestation of Cell Adaptation to the Environment. Applied and Environmental Microbiology, 73(10), 3423-3427. doi:10.1128/aem.00047-07 [+]
Agustí, G., Codony, F., Fittipaldi, M., Adrados, B., & Morató, J. (2010). Viability Determination of Helicobacter pylori Using Propidium Monoazide Quantitative PCR. Helicobacter, 15(5), 473-476. doi:10.1111/j.1523-5378.2010.00794.x

Andersen, A. P., Elliott, D. A., Lawson, M., Barland, P., Hatcher, V. B., & Puszkin, E. G. (1997). Growth and morphological transformations of Helicobacter pylori in broth media. Journal of Clinical Microbiology, 35(11), 2918-2922. doi:10.1128/jcm.35.11.2918-2922.1997

Azevedo, N. F., Almeida, C., Cerqueira, L., Dias, S., Keevil, C. W., & Vieira, M. J. (2007). Coccoid Form of Helicobacter pylori as a Morphological Manifestation of Cell Adaptation to the Environment. Applied and Environmental Microbiology, 73(10), 3423-3427. doi:10.1128/aem.00047-07

Bai, X., Xi, C., & Wu, J. (2016). Survival of Helicobacter pylori in the wastewater treatment process and the receiving river in Michigan, USA. Journal of Water and Health, 14(4), 692-698. doi:10.2166/wh.2016.259

Barker, J., & Brown, M. R. W. (1994). Trojan Horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology, 140(6), 1253-1259. doi:10.1099/00221287-140-6-1253

Batra, P., Mathur, P., & Misra, M. C. (2016). Aeromonas spp.: An Emerging Nosocomial Pathogen. Journal of Laboratory Physicians, 8(01), 001-004. doi:10.4103/0974-2727.176234

Burstein, D., Amaro, F., Zusman, T., Lifshitz, Z., Cohen, O., Gilbert, J. A., … Segal, G. (2016). Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nature Genetics, 48(2), 167-175. doi:10.1038/ng.3481

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336. doi:10.1038/nmeth.f.303

CELLINI, L., ROBUFFO, I., CAMPLI, E., BARTOLOMEO, S., TARABORELLI, T., & DAINELLI, B. (1998). Recovery ofHelicobacter pyloriATCC43504 from a viable but not culturable state: regrowth or resuscitation? APMIS, 106(1-6), 571-579. doi:10.1111/j.1699-0463.1998.tb01386.x

Cengiz, A., Harmis, N., & Stapleton, F. (2000). Co-incubation of Acanthamoeba castellanii with strains of Pseudomonas aeruginosa alters the survival of amoeba. Clinical and Experimental Ophthalmology, 28(3), 191-193. doi:10.1046/j.1442-9071.2000.00291.x

Chavatte, N., Lambrecht, E., Van Damme, I., Sabbe, K., & Houf, K. (2016). Abundance, diversity and community composition of free-living protozoa on vegetable sprouts. Food Microbiology, 55, 55-63. doi:10.1016/j.fm.2015.11.013

Comeau, A. M., Douglas, G. M., & Langille, M. G. I. (2017). Microbiome Helper: a Custom and Streamlined Workflow for Microbiome Research. mSystems, 2(1). doi:10.1128/msystems.00127-16

Delafont, V., Brouke, A., Bouchon, D., Moulin, L., & Héchard, Y. (2013). Microbiome of free-living amoebae isolated from drinking water. Water Research, 47(19), 6958-6965. doi:10.1016/j.watres.2013.07.047

Di Rienzi, S. C., Sharon, I., Wrighton, K. C., Koren, O., Hug, L. A., Thomas, B. C., … Ley, R. E. (2013). The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. eLife, 2. doi:10.7554/elife.01102

Ferreira, S., Luís, Â., Oleastro, M., Pereira, L., & Domingues, F. C. (2019). A meta-analytic perspective on Arcobacter spp. antibiotic resistance. Journal of Global Antimicrobial Resistance, 16, 130-139. doi:10.1016/j.jgar.2018.12.018

Gaze, W. H., Burroughs, N., Gallagher, M. P., & Wellington, E. M. H. (2003). Interactions between Salmonella typhimurium and Acanthamoeba polyphaga , and Observation of a New Mode of Intracellular Growth within Contractile Vacuoles. Microbial Ecology, 46(3), 358-369. doi:10.1007/s00248-003-1001-3

Gellatly, S. L., & Hancock, R. E. W. (2013). Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens and Disease, 67(3), 159-173. doi:10.1111/2049-632x.12033

Ghenghesh, K. S., Ghenghesh, K. S., Ahmed, S. F., El-Khalek, R. A., Al-Gendy, A., & Klena, J. (2008). Aeromonas-Associated Infections in Developing Countries. Journal of Infection in Developing Countries, 2(2), 81. doi:10.3855/t2.2.81

Gourabathini, P., Brandl, M. T., Redding, K. S., Gunderson, J. H., & Berk, S. G. (2008). Interactions between Food-Borne Pathogens and Protozoa Isolated from Lettuce and Spinach. Applied and Environmental Microbiology, 74(8), 2518-2525. doi:10.1128/aem.02709-07

Hooi, J. K. Y., Lai, W. Y., Ng, W. K., Suen, M. M. Y., Underwood, F. E., Tanyingoh, D., … Ng, S. C. (2017). Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology, 153(2), 420-429. doi:10.1053/j.gastro.2017.04.022

Hsueh, T.-Y., & Gibson, K. E. (2015). Transfer of Acanthamoeba spp. to fresh produce from water and environmental surfaces. Letters in Applied Microbiology, 61(2), 192-198. doi:10.1111/lam.12445

Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., … Banfield, J. F. (2016). A new view of the tree of life. Nature Microbiology, 1(5). doi:10.1038/nmicrobiol.2016.48

Huse, S. M., Dethlefsen, L., Huber, J. A., Mark Welch, D., Relman, D. A., & Sogin, M. L. (2008). Correction: Exploring Microbial Diversity and Taxonomy Using SSU rRNA Hypervariable Tag Sequencing. PLoS Genetics, 4(12). doi:10.1371/annotation/3d8a6578-ce56-45aa-bc71-05078355b851

Iovieno, A., Ledee, D. R., Miller, D., & Alfonso, E. C. (2010). Detection of Bacterial Endosymbionts in Clinical Acanthamoeba Isolates. Ophthalmology, 117(3), 445-452.e3. doi:10.1016/j.ophtha.2009.08.033

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2012). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), e1-e1. doi:10.1093/nar/gks808

Kopylova, E., Noé, L., & Touzet, H. (2012). SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics, 28(24), 3211-3217. doi:10.1093/bioinformatics/bts611

KUROKAWA, M., NUICINA, M., NAKANISHI, H., TOMITA, S., TAMURA, T., & SHIMOYAMA, T. (1999). Resuscitation from the Viable but Nonculturable State of Helicobacter pylori. Journal of the Japanese Association for Infectious Diseases, 73(1), 15-19. doi:10.11150/kansenshogakuzasshi1970.73.15

Del Mar Lleò, M., Benedetti, D., Tafi, M. C., Signoretto, C., & Canepari, P. (2007). Inhibition of the resuscitation from the viable but non-culturable state in Enterococcus faecalis. Environmental Microbiology, 9(9), 2313-2320. doi:10.1111/j.1462-2920.2007.01345.x

Lyczak, J. B., Cannon, C. L., & Pier, G. B. (2000). Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist1*Address for correspondence: Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA. Microbes and Infection, 2(9), 1051-1060. doi:10.1016/s1286-4579(00)01259-4

LYNCH, M. F., TAUXE, R. V., & HEDBERG, C. W. (2009). The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiology and Infection, 137(3), 307-315. doi:10.1017/s0950268808001969

Marshall, B. (2002). Helicobacter pylori: 20 years on. Clinical Medicine, 2(2), 147-152. doi:10.7861/clinmedicine.2-2-147

José Maschio, V., Corção, G., & Rott, M. B. (2015). IDENTIFICATION OF Pseudomonas spp. AS AMOEBA-RESISTANT MICROORGANISMS IN ISOLATES OF Acanthamoeba. Revista do Instituto de Medicina Tropical de São Paulo, 57(1), 81-83. doi:10.1590/s0036-46652015000100012

McLean, J. S., Lombardo, M.-J., Badger, J. H., Edlund, A., Novotny, M., Yee-Greenbaum, J., … Lasken, R. S. (2013). Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proceedings of the National Academy of Sciences, 110(26), E2390-E2399. doi:10.1073/pnas.1219809110

Medina, G., Flores-Martin, S., Fonseca, B., Otth, C., & Fernandez, H. (2014). Mechanisms associated with phagocytosis of Arcobacter butzleri by Acanthamoeba castellanii. Parasitology Research, 113(5), 1933-1942. doi:10.1007/s00436-014-3842-8

Moreno, Y., Ferrús, M. A., Alonso, J. L., Jiménez, A., & Hernández, J. (2003). Use of fluorescent in situ hybridization to evidence the presence of Helicobacter pylori in water. Water Research, 37(9), 2251-2256. doi:10.1016/s0043-1354(02)00624-3

Moreno, Y., Moreno-Mesonero, L., & García-Hernández, J. (2019). DVC-FISH to identify potentially pathogenic Legionella inside free-living amoebae from water sources. Environmental Research, 176, 108521. doi:10.1016/j.envres.2019.06.002

Moreno-Mesonero, L., Moreno, Y., Alonso, J. L., & Ferrús, M. A. (2016). DVC-FISH and PMA-qPCR techniques to assess the survival of Helicobacter pylori inside Acanthamoeba castellanii. Research in Microbiology, 167(1), 29-34. doi:10.1016/j.resmic.2015.08.002

Moreno-Mesonero, L., Moreno, Y., Alonso, J. L., & Ferrús, M. A. (2017). Detection of viableHelicobacter pyloriinside free-living amoebae in wastewater and drinking water samples from Eastern Spain. Environmental Microbiology, 19(10), 4103-4112. doi:10.1111/1462-2920.13856

Ng, C. G., Loke, M. F., Goh, K. L., Vadivelu, J., & Ho, B. (2017). Biofilm formation enhances Helicobacter pylori survivability in vegetables. Food Microbiology, 62, 68-76. doi:10.1016/j.fm.2016.10.010

Nilsson, H.-O., Blom, J., Al-Soud, W. A., Ljungh, A., Andersen, L. P., & Wadström, T. (2002). Effect of Cold Starvation, Acid Stress, and Nutrients on Metabolic Activity of Helicobacter pylori. Applied and Environmental Microbiology, 68(1), 11-19. doi:10.1128/aem.68.1.11-19.2002

Olofsson, J., Axelsson-Olsson, D., Brudin, L., Olsen, B., & Ellström, P. (2013). Campylobacter jejuni Actively Invades the Amoeba Acanthamoeba polyphaga and Survives within Non Digestive Vacuoles. PLoS ONE, 8(11), e78873. doi:10.1371/journal.pone.0078873

Percival, S. L., & Thomas, J. G. (2009). Transmission of Helicobacter pylori and the role of water and biofilms. Journal of Water and Health, 7(3), 469-477. doi:10.2166/wh.2009.070

Piqueres, P., Moreno, Y., Alonso, J. L., & Ferrús, M. A. (2006). A combination of direct viable count and fluorescent in situ hybridization for estimating Helicobacter pylori cell viability. Research in Microbiology, 157(4), 345-349. doi:10.1016/j.resmic.2005.09.003

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., … Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. doi:10.1093/nar/gks1219

Rahman, M., Abd, H., Romling, U., Sandstrom, G., & Möllby, R. (2008). Aeromonas–Acanthamoeba interaction and early shift to a viable but nonculturable state of Aeromonas by Acanthamoeba. Journal of Applied Microbiology, 104(5), 1449-1457. doi:10.1111/j.1365-2672.2007.03687.x

Richards, C. L., Buchholz, B. J., Ford, T. E., Broadaway, S. C., Pyle, B. H., & Camper, A. K. (2011). Optimizing the growth of stressed Helicobacter pylori. Journal of Microbiological Methods, 84(2), 174-182. doi:10.1016/j.mimet.2010.11.015

Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson, I. J., Cheng, J.-F., … Woyke, T. (2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499(7459), 431-437. doi:10.1038/nature12352

Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584. doi:10.7717/peerj.2584

Samba-Louaka, A., Robino, E., Cochard, T., Branger, M., Delafont, V., Aucher, W., … Héchard, Y. (2018). Environmental Mycobacterium avium subsp. paratuberculosis Hosted by Free-Living Amoebae. Frontiers in Cellular and Infection Microbiology, 8. doi:10.3389/fcimb.2018.00028

Santiago, P., Moreno, Y., & Ferrús, M. A. (2015). Identification of ViableHelicobacter pyloriin Drinking Water Supplies by Cultural and Molecular Techniques. Helicobacter, 20(4), 252-259. doi:10.1111/hel.12205

Sarem, M., & Corti, R. (2016). Rol de las formas cocoides de Helicobacter pylori en la infección y la recrudescencia. Gastroenterología y Hepatología, 39(1), 28-35. doi:10.1016/j.gastrohep.2015.04.009

Signoretto, C., del Mar Lleò, M., Tafi, M. C., & Canepari, P. (2000). Cell Wall Chemical Composition of Enterococcus faecalis in the Viable but Nonculturable State. Applied and Environmental Microbiology, 66(5), 1953-1959. doi:10.1128/aem.66.5.1953-1959.2000

Tezcan-Merdol, D., Ljungström, M., Winiecka-Krusnell, J., Linder, E., Engstrand, L., & Rhen, M. (2004). Uptake and Replication of Salmonella enterica in Acanthamoeba rhysodes. Applied and Environmental Microbiology, 70(6), 3706-3714. doi:10.1128/aem.70.6.3706-3714.2004

Thomas, V., Loret, J.-F., Jousset, M., & Greub, G. (2008). Biodiversity of amoebae and amoebae-resisting bacteria in a drinking water treatment plant. Environmental Microbiology, 10(10), 2728-2745. doi:10.1111/j.1462-2920.2008.01693.x

Vaerewijck, M. J. M., Sabbe, K., Baré, J., & Houf, K. (2011). Occurrence and diversity of free-living protozoa on butterhead lettuce. International Journal of Food Microbiology, 147(2), 105-111. doi:10.1016/j.ijfoodmicro.2011.03.015

Waite, D. W., Vanwonterghem, I., Rinke, C., Parks, D. H., Zhang, Y., Takai, K., … Hugenholtz, P. (2017). Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.). Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.00682

White, C. I., Birtles, R. J., Wigley, P., & Jones, P. H. (2010). Mycobacterium avium subspecies paratuberculosis in free-living amoebae isolated from fields not used for grazing. Veterinary Record, 166(13), 401-402. doi:10.1136/vr.b4797

Winiecka-Krusnell, J., Wreiber, K., Euler, A. von, Engstrand, L., & Linder, E. (2002). Free-living Amoebae Promote Growth and Survival of Helicobacter pylori. Scandinavian Journal of Infectious Diseases, 34(4), 253-256. doi:10.1080/00365540110080052

Wu, D., Hugenholtz, P., Mavromatis, K., Pukall, R., Dalin, E., Ivanova, N. N., … Eisen, J. A. (2009). A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature, 462(7276), 1056-1060. doi:10.1038/nature08656

Yahaghi, E., Khamesipour, F., Mashayekhi, F., Safarpoor Dehkordi, F., Sakhaei, M. H., Masoudimanesh, M., & Khameneie, M. K. (2014). Helicobacter pyloriin Vegetables and Salads: Genotyping and Antimicrobial Resistance Properties. BioMed Research International, 2014, 1-11. doi:10.1155/2014/757941

Yeoh, Y. K., Sekiguchi, Y., Parks, D. H., & Hugenholtz, P. (2015). Comparative Genomics of Candidate Phylum TM6 Suggests That Parasitism Is Widespread and Ancestral in This Lineage. Molecular Biology and Evolution, 33(4), 915-927. doi:10.1093/molbev/msv281

Yousuf, F. A., Siddiqui, R., & Khan, N. A. (2013). Acanthamoeba castellanii of the T4 genotype is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila. Parasites & Vectors, 6(1). doi:10.1186/1756-3305-6-169

Zhang, Y., & Sievert, S. M. (2014). Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Frontiers in Microbiology, 5. doi:10.3389/fmicb.2014.00110

Zhang, J., Kobert, K., Flouri, T., & Stamatakis, A. (2013). PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 30(5), 614-620. doi:10.1093/bioinformatics/btt593

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem