- -

Evidence of viable Helicobacter pylori and other bacteria of public health interest associated with free-living amoeba in lettuce samples by next generation sequencing and other molecular techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evidence of viable Helicobacter pylori and other bacteria of public health interest associated with free-living amoeba in lettuce samples by next generation sequencing and other molecular techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moreno-Mesonero, Laura es_ES
dc.contributor.author Hortelano, Irene es_ES
dc.contributor.author Moreno Trigos, Mª Yolanda es_ES
dc.contributor.author Ferrús Pérez, Mª Antonia es_ES
dc.date.accessioned 2021-02-16T04:32:54Z
dc.date.available 2021-02-16T04:32:54Z
dc.date.issued 2020-04-02 es_ES
dc.identifier.issn 0168-1605 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161399
dc.description.abstract [EN] Vegetables are one of the sources from which Helicobacter pylori can be acquired. This bacterium infects > 50% of the global population and is a recognized type I human carcinogen. H. pylori enters into the viable but nonculturable state when it is in the environment, and therefore the use of molecular techniques is much convenient for its detection. Free-living amoebae (FLA) are protozoans found in vegetables. They are transmission vehicles for amoeba-resistant bacteria, among which H. pylori is included. The aim of this study is to study the occurrence and viability of H. pylori from lettuce samples, H. pylori internalized into FLA and the microbiome of FLA isolated from these samples. Special focus was pointed to human pathogenic bacteria. H. pylori was not directly detected in any lettuce sample by means of molecular techniques and neither by culture. However, intra-amoebic H. pylori DNA was detected by means of PMA-qPCR in 55% of the samples and viable intra-amoebic H. pylori cells in 25% of the samples by means of DVC-FISH technique. When FLA microbiome was studied, 21 bacterial genera were part of FLA microbiome in all samples. Helicobacter genus was detected as part of the FLA microbiome in two samples. Other bacteria of public health interest such as Aeromonas sp., Arcobacter sp., Legionella sp., Mycobacterium sp., Pseudomonas sp. and Salmonella sp. were detected as part of FLA microbiome along the analysed samples. This study demonstrates for the first time that H. pylori is internalized as well as alive inside FLA isolated from vegetables. Moreover, this study shows that FLA promote H. pylori detection in environmental samples. In addition, as far as we are aware, this is the first study which studies the microbiome of FLA isolated from vegetables. Among the FLA microbiome, bacteria of public health interest were detected, pointing out that FLA are carriers of these pathogens which can reach humans and cause a public health concern. es_ES
dc.description.sponsorship This study has been supported by the Conselleria de Educacion, Investigacion, Cultura y Deporte, of the Community of Valencia, Spain, within the program of support for research under project AICO/2018/273. The author Laura Moreno-Mesonero is the recipient of a technician contract funded by the Consellerfa de Educacion, Investigacion, Cultura y Deporte, of the Community of Valencia, Spain, within the program of support for research under project AICO/2018/273. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Food Microbiology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Lettuce es_ES
dc.subject Free living amoebae es_ES
dc.subject Helicobacter pylori es_ES
dc.subject Microbiome es_ES
dc.subject Metagenomics es_ES
dc.subject Amoebae resistant bacteria es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.title Evidence of viable Helicobacter pylori and other bacteria of public health interest associated with free-living amoeba in lettuce samples by next generation sequencing and other molecular techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ijfoodmicro.2019.108477 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F273/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Moreno-Mesonero, L.; Hortelano, I.; Moreno Trigos, MY.; Ferrús Pérez, MA. (2020). Evidence of viable Helicobacter pylori and other bacteria of public health interest associated with free-living amoeba in lettuce samples by next generation sequencing and other molecular techniques. International Journal of Food Microbiology. 318:1-8. https://doi.org/10.1016/j.ijfoodmicro.2019.108477 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijfoodmicro.2019.108477 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 318 es_ES
dc.identifier.pmid 31855786 es_ES
dc.relation.pasarela S\401927 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Agustí, G., Codony, F., Fittipaldi, M., Adrados, B., & Morató, J. (2010). Viability Determination of Helicobacter pylori Using Propidium Monoazide Quantitative PCR. Helicobacter, 15(5), 473-476. doi:10.1111/j.1523-5378.2010.00794.x es_ES
dc.description.references Andersen, A. P., Elliott, D. A., Lawson, M., Barland, P., Hatcher, V. B., & Puszkin, E. G. (1997). Growth and morphological transformations of Helicobacter pylori in broth media. Journal of Clinical Microbiology, 35(11), 2918-2922. doi:10.1128/jcm.35.11.2918-2922.1997 es_ES
dc.description.references Azevedo, N. F., Almeida, C., Cerqueira, L., Dias, S., Keevil, C. W., & Vieira, M. J. (2007). Coccoid Form of Helicobacter pylori as a Morphological Manifestation of Cell Adaptation to the Environment. Applied and Environmental Microbiology, 73(10), 3423-3427. doi:10.1128/aem.00047-07 es_ES
dc.description.references Bai, X., Xi, C., & Wu, J. (2016). Survival of Helicobacter pylori in the wastewater treatment process and the receiving river in Michigan, USA. Journal of Water and Health, 14(4), 692-698. doi:10.2166/wh.2016.259 es_ES
dc.description.references Barker, J., & Brown, M. R. W. (1994). Trojan Horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology, 140(6), 1253-1259. doi:10.1099/00221287-140-6-1253 es_ES
dc.description.references Batra, P., Mathur, P., & Misra, M. C. (2016). Aeromonas spp.: An Emerging Nosocomial Pathogen. Journal of Laboratory Physicians, 8(01), 001-004. doi:10.4103/0974-2727.176234 es_ES
dc.description.references Burstein, D., Amaro, F., Zusman, T., Lifshitz, Z., Cohen, O., Gilbert, J. A., … Segal, G. (2016). Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nature Genetics, 48(2), 167-175. doi:10.1038/ng.3481 es_ES
dc.description.references Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336. doi:10.1038/nmeth.f.303 es_ES
dc.description.references CELLINI, L., ROBUFFO, I., CAMPLI, E., BARTOLOMEO, S., TARABORELLI, T., & DAINELLI, B. (1998). Recovery ofHelicobacter pyloriATCC43504 from a viable but not culturable state: regrowth or resuscitation? APMIS, 106(1-6), 571-579. doi:10.1111/j.1699-0463.1998.tb01386.x es_ES
dc.description.references Cengiz, A., Harmis, N., & Stapleton, F. (2000). Co-incubation of Acanthamoeba castellanii with strains of Pseudomonas aeruginosa alters the survival of amoeba. Clinical and Experimental Ophthalmology, 28(3), 191-193. doi:10.1046/j.1442-9071.2000.00291.x es_ES
dc.description.references Chavatte, N., Lambrecht, E., Van Damme, I., Sabbe, K., & Houf, K. (2016). Abundance, diversity and community composition of free-living protozoa on vegetable sprouts. Food Microbiology, 55, 55-63. doi:10.1016/j.fm.2015.11.013 es_ES
dc.description.references Comeau, A. M., Douglas, G. M., & Langille, M. G. I. (2017). Microbiome Helper: a Custom and Streamlined Workflow for Microbiome Research. mSystems, 2(1). doi:10.1128/msystems.00127-16 es_ES
dc.description.references Delafont, V., Brouke, A., Bouchon, D., Moulin, L., & Héchard, Y. (2013). Microbiome of free-living amoebae isolated from drinking water. Water Research, 47(19), 6958-6965. doi:10.1016/j.watres.2013.07.047 es_ES
dc.description.references Di Rienzi, S. C., Sharon, I., Wrighton, K. C., Koren, O., Hug, L. A., Thomas, B. C., … Ley, R. E. (2013). The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. eLife, 2. doi:10.7554/elife.01102 es_ES
dc.description.references Ferreira, S., Luís, Â., Oleastro, M., Pereira, L., & Domingues, F. C. (2019). A meta-analytic perspective on Arcobacter spp. antibiotic resistance. Journal of Global Antimicrobial Resistance, 16, 130-139. doi:10.1016/j.jgar.2018.12.018 es_ES
dc.description.references Gaze, W. H., Burroughs, N., Gallagher, M. P., & Wellington, E. M. H. (2003). Interactions between Salmonella typhimurium and Acanthamoeba polyphaga , and Observation of a New Mode of Intracellular Growth within Contractile Vacuoles. Microbial Ecology, 46(3), 358-369. doi:10.1007/s00248-003-1001-3 es_ES
dc.description.references Gellatly, S. L., & Hancock, R. E. W. (2013). Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens and Disease, 67(3), 159-173. doi:10.1111/2049-632x.12033 es_ES
dc.description.references Ghenghesh, K. S., Ghenghesh, K. S., Ahmed, S. F., El-Khalek, R. A., Al-Gendy, A., & Klena, J. (2008). Aeromonas-Associated Infections in Developing Countries. Journal of Infection in Developing Countries, 2(2), 81. doi:10.3855/t2.2.81 es_ES
dc.description.references Gourabathini, P., Brandl, M. T., Redding, K. S., Gunderson, J. H., & Berk, S. G. (2008). Interactions between Food-Borne Pathogens and Protozoa Isolated from Lettuce and Spinach. Applied and Environmental Microbiology, 74(8), 2518-2525. doi:10.1128/aem.02709-07 es_ES
dc.description.references Hooi, J. K. Y., Lai, W. Y., Ng, W. K., Suen, M. M. Y., Underwood, F. E., Tanyingoh, D., … Ng, S. C. (2017). Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology, 153(2), 420-429. doi:10.1053/j.gastro.2017.04.022 es_ES
dc.description.references Hsueh, T.-Y., & Gibson, K. E. (2015). Transfer of Acanthamoeba spp. to fresh produce from water and environmental surfaces. Letters in Applied Microbiology, 61(2), 192-198. doi:10.1111/lam.12445 es_ES
dc.description.references Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., … Banfield, J. F. (2016). A new view of the tree of life. Nature Microbiology, 1(5). doi:10.1038/nmicrobiol.2016.48 es_ES
dc.description.references Huse, S. M., Dethlefsen, L., Huber, J. A., Mark Welch, D., Relman, D. A., & Sogin, M. L. (2008). Correction: Exploring Microbial Diversity and Taxonomy Using SSU rRNA Hypervariable Tag Sequencing. PLoS Genetics, 4(12). doi:10.1371/annotation/3d8a6578-ce56-45aa-bc71-05078355b851 es_ES
dc.description.references Iovieno, A., Ledee, D. R., Miller, D., & Alfonso, E. C. (2010). Detection of Bacterial Endosymbionts in Clinical Acanthamoeba Isolates. Ophthalmology, 117(3), 445-452.e3. doi:10.1016/j.ophtha.2009.08.033 es_ES
dc.description.references Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2012). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), e1-e1. doi:10.1093/nar/gks808 es_ES
dc.description.references Kopylova, E., Noé, L., & Touzet, H. (2012). SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics, 28(24), 3211-3217. doi:10.1093/bioinformatics/bts611 es_ES
dc.description.references KUROKAWA, M., NUICINA, M., NAKANISHI, H., TOMITA, S., TAMURA, T., & SHIMOYAMA, T. (1999). Resuscitation from the Viable but Nonculturable State of Helicobacter pylori. Journal of the Japanese Association for Infectious Diseases, 73(1), 15-19. doi:10.11150/kansenshogakuzasshi1970.73.15 es_ES
dc.description.references Del Mar Lleò, M., Benedetti, D., Tafi, M. C., Signoretto, C., & Canepari, P. (2007). Inhibition of the resuscitation from the viable but non-culturable state in Enterococcus faecalis. Environmental Microbiology, 9(9), 2313-2320. doi:10.1111/j.1462-2920.2007.01345.x es_ES
dc.description.references Lyczak, J. B., Cannon, C. L., & Pier, G. B. (2000). Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist1*Address for correspondence: Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA. Microbes and Infection, 2(9), 1051-1060. doi:10.1016/s1286-4579(00)01259-4 es_ES
dc.description.references LYNCH, M. F., TAUXE, R. V., & HEDBERG, C. W. (2009). The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiology and Infection, 137(3), 307-315. doi:10.1017/s0950268808001969 es_ES
dc.description.references Marshall, B. (2002). Helicobacter pylori: 20 years on. Clinical Medicine, 2(2), 147-152. doi:10.7861/clinmedicine.2-2-147 es_ES
dc.description.references José Maschio, V., Corção, G., & Rott, M. B. (2015). IDENTIFICATION OF Pseudomonas spp. AS AMOEBA-RESISTANT MICROORGANISMS IN ISOLATES OF Acanthamoeba. Revista do Instituto de Medicina Tropical de São Paulo, 57(1), 81-83. doi:10.1590/s0036-46652015000100012 es_ES
dc.description.references McLean, J. S., Lombardo, M.-J., Badger, J. H., Edlund, A., Novotny, M., Yee-Greenbaum, J., … Lasken, R. S. (2013). Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proceedings of the National Academy of Sciences, 110(26), E2390-E2399. doi:10.1073/pnas.1219809110 es_ES
dc.description.references Medina, G., Flores-Martin, S., Fonseca, B., Otth, C., & Fernandez, H. (2014). Mechanisms associated with phagocytosis of Arcobacter butzleri by Acanthamoeba castellanii. Parasitology Research, 113(5), 1933-1942. doi:10.1007/s00436-014-3842-8 es_ES
dc.description.references Moreno, Y., Ferrús, M. A., Alonso, J. L., Jiménez, A., & Hernández, J. (2003). Use of fluorescent in situ hybridization to evidence the presence of Helicobacter pylori in water. Water Research, 37(9), 2251-2256. doi:10.1016/s0043-1354(02)00624-3 es_ES
dc.description.references Moreno, Y., Moreno-Mesonero, L., & García-Hernández, J. (2019). DVC-FISH to identify potentially pathogenic Legionella inside free-living amoebae from water sources. Environmental Research, 176, 108521. doi:10.1016/j.envres.2019.06.002 es_ES
dc.description.references Moreno-Mesonero, L., Moreno, Y., Alonso, J. L., & Ferrús, M. A. (2016). DVC-FISH and PMA-qPCR techniques to assess the survival of Helicobacter pylori inside Acanthamoeba castellanii. Research in Microbiology, 167(1), 29-34. doi:10.1016/j.resmic.2015.08.002 es_ES
dc.description.references Moreno-Mesonero, L., Moreno, Y., Alonso, J. L., & Ferrús, M. A. (2017). Detection of viableHelicobacter pyloriinside free-living amoebae in wastewater and drinking water samples from Eastern Spain. Environmental Microbiology, 19(10), 4103-4112. doi:10.1111/1462-2920.13856 es_ES
dc.description.references Ng, C. G., Loke, M. F., Goh, K. L., Vadivelu, J., & Ho, B. (2017). Biofilm formation enhances Helicobacter pylori survivability in vegetables. Food Microbiology, 62, 68-76. doi:10.1016/j.fm.2016.10.010 es_ES
dc.description.references Nilsson, H.-O., Blom, J., Al-Soud, W. A., Ljungh, A., Andersen, L. P., & Wadström, T. (2002). Effect of Cold Starvation, Acid Stress, and Nutrients on Metabolic Activity of Helicobacter pylori. Applied and Environmental Microbiology, 68(1), 11-19. doi:10.1128/aem.68.1.11-19.2002 es_ES
dc.description.references Olofsson, J., Axelsson-Olsson, D., Brudin, L., Olsen, B., & Ellström, P. (2013). Campylobacter jejuni Actively Invades the Amoeba Acanthamoeba polyphaga and Survives within Non Digestive Vacuoles. PLoS ONE, 8(11), e78873. doi:10.1371/journal.pone.0078873 es_ES
dc.description.references Percival, S. L., & Thomas, J. G. (2009). Transmission of Helicobacter pylori and the role of water and biofilms. Journal of Water and Health, 7(3), 469-477. doi:10.2166/wh.2009.070 es_ES
dc.description.references Piqueres, P., Moreno, Y., Alonso, J. L., & Ferrús, M. A. (2006). A combination of direct viable count and fluorescent in situ hybridization for estimating Helicobacter pylori cell viability. Research in Microbiology, 157(4), 345-349. doi:10.1016/j.resmic.2005.09.003 es_ES
dc.description.references Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., … Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. doi:10.1093/nar/gks1219 es_ES
dc.description.references Rahman, M., Abd, H., Romling, U., Sandstrom, G., & Möllby, R. (2008). Aeromonas–Acanthamoeba interaction and early shift to a viable but nonculturable state of Aeromonas by Acanthamoeba. Journal of Applied Microbiology, 104(5), 1449-1457. doi:10.1111/j.1365-2672.2007.03687.x es_ES
dc.description.references Richards, C. L., Buchholz, B. J., Ford, T. E., Broadaway, S. C., Pyle, B. H., & Camper, A. K. (2011). Optimizing the growth of stressed Helicobacter pylori. Journal of Microbiological Methods, 84(2), 174-182. doi:10.1016/j.mimet.2010.11.015 es_ES
dc.description.references Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson, I. J., Cheng, J.-F., … Woyke, T. (2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499(7459), 431-437. doi:10.1038/nature12352 es_ES
dc.description.references Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584. doi:10.7717/peerj.2584 es_ES
dc.description.references Samba-Louaka, A., Robino, E., Cochard, T., Branger, M., Delafont, V., Aucher, W., … Héchard, Y. (2018). Environmental Mycobacterium avium subsp. paratuberculosis Hosted by Free-Living Amoebae. Frontiers in Cellular and Infection Microbiology, 8. doi:10.3389/fcimb.2018.00028 es_ES
dc.description.references Santiago, P., Moreno, Y., & Ferrús, M. A. (2015). Identification of ViableHelicobacter pyloriin Drinking Water Supplies by Cultural and Molecular Techniques. Helicobacter, 20(4), 252-259. doi:10.1111/hel.12205 es_ES
dc.description.references Sarem, M., & Corti, R. (2016). Rol de las formas cocoides de Helicobacter pylori en la infección y la recrudescencia. Gastroenterología y Hepatología, 39(1), 28-35. doi:10.1016/j.gastrohep.2015.04.009 es_ES
dc.description.references Signoretto, C., del Mar Lleò, M., Tafi, M. C., & Canepari, P. (2000). Cell Wall Chemical Composition of Enterococcus faecalis in the Viable but Nonculturable State. Applied and Environmental Microbiology, 66(5), 1953-1959. doi:10.1128/aem.66.5.1953-1959.2000 es_ES
dc.description.references Tezcan-Merdol, D., Ljungström, M., Winiecka-Krusnell, J., Linder, E., Engstrand, L., & Rhen, M. (2004). Uptake and Replication of Salmonella enterica in Acanthamoeba rhysodes. Applied and Environmental Microbiology, 70(6), 3706-3714. doi:10.1128/aem.70.6.3706-3714.2004 es_ES
dc.description.references Thomas, V., Loret, J.-F., Jousset, M., & Greub, G. (2008). Biodiversity of amoebae and amoebae-resisting bacteria in a drinking water treatment plant. Environmental Microbiology, 10(10), 2728-2745. doi:10.1111/j.1462-2920.2008.01693.x es_ES
dc.description.references Vaerewijck, M. J. M., Sabbe, K., Baré, J., & Houf, K. (2011). Occurrence and diversity of free-living protozoa on butterhead lettuce. International Journal of Food Microbiology, 147(2), 105-111. doi:10.1016/j.ijfoodmicro.2011.03.015 es_ES
dc.description.references Waite, D. W., Vanwonterghem, I., Rinke, C., Parks, D. H., Zhang, Y., Takai, K., … Hugenholtz, P. (2017). Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.). Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.00682 es_ES
dc.description.references White, C. I., Birtles, R. J., Wigley, P., & Jones, P. H. (2010). Mycobacterium avium subspecies paratuberculosis in free-living amoebae isolated from fields not used for grazing. Veterinary Record, 166(13), 401-402. doi:10.1136/vr.b4797 es_ES
dc.description.references Winiecka-Krusnell, J., Wreiber, K., Euler, A. von, Engstrand, L., & Linder, E. (2002). Free-living Amoebae Promote Growth and Survival of Helicobacter pylori. Scandinavian Journal of Infectious Diseases, 34(4), 253-256. doi:10.1080/00365540110080052 es_ES
dc.description.references Wu, D., Hugenholtz, P., Mavromatis, K., Pukall, R., Dalin, E., Ivanova, N. N., … Eisen, J. A. (2009). A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature, 462(7276), 1056-1060. doi:10.1038/nature08656 es_ES
dc.description.references Yahaghi, E., Khamesipour, F., Mashayekhi, F., Safarpoor Dehkordi, F., Sakhaei, M. H., Masoudimanesh, M., & Khameneie, M. K. (2014). Helicobacter pyloriin Vegetables and Salads: Genotyping and Antimicrobial Resistance Properties. BioMed Research International, 2014, 1-11. doi:10.1155/2014/757941 es_ES
dc.description.references Yeoh, Y. K., Sekiguchi, Y., Parks, D. H., & Hugenholtz, P. (2015). Comparative Genomics of Candidate Phylum TM6 Suggests That Parasitism Is Widespread and Ancestral in This Lineage. Molecular Biology and Evolution, 33(4), 915-927. doi:10.1093/molbev/msv281 es_ES
dc.description.references Yousuf, F. A., Siddiqui, R., & Khan, N. A. (2013). Acanthamoeba castellanii of the T4 genotype is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila. Parasites & Vectors, 6(1). doi:10.1186/1756-3305-6-169 es_ES
dc.description.references Zhang, Y., & Sievert, S. M. (2014). Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Frontiers in Microbiology, 5. doi:10.3389/fmicb.2014.00110 es_ES
dc.description.references Zhang, J., Kobert, K., Flouri, T., & Stamatakis, A. (2013). PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 30(5), 614-620. doi:10.1093/bioinformatics/btt593 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem